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9.1  Introduction 
 
Basic, most serious disadvantage of simulation: 

With a stochastic simulation, don’t get exact “answers” from run 

Two different runs of same model ⇒ different numerical results 
 
Random input: 

Random numbers 
Random variates 

→ Simulation 
model/code → 

Random output: 
Performance 
measures 

 
Thus, the output performance measures: 

Really observations from their probability distribution 
Ask questions about this distribution: 

Mean (expected value): E(average WIP) 
Variance: Var(average WIP) 
Probabilities: P(average WIP > 250) 

Quantiles: What value of x is such that P(avg. WIP > x) ≤ 0.02? 
 
Interpreting simulation output:  statistical analysis of output data 
 
Failure to recognize, deal with randomness in simulation output can lead to serious 

errors, misinterpretation, bad decisions 
 
Also, must take care to use appropriate statistical methods, since simulation output 

data are usually nonstationary, autocorrelated, and non-normal, contrary to 
assumptions behind classical IID statistical methods 

 
Enhanced computer power and speed is making it much easier to carry out 

appropriate simulation studies and analyze the output properly 
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The Statistical Nature of Simulation Output 
 
Let Y1, Y2, ... be an output process from a single simulation run 

Yi = delay in queue of ith arriving customer 
Yi = production in ith hour in a factory 

 
Yi’s are random variables that are generally neither independent nor identically 

distributed (nor normally distributed), so classical IID normal-theory statistical 
methods don’t apply directly to the Yi’s 

 
Let y11, y12, ..., y1m be a realization of the random variables Y1, Y2, ..., Ym resulting 

from making a single simulation run of length m observations, using a particular 
stream of underlying U(0, 1) random numbers. 

 
If we use a separate stream of random numbers for another simulation run of this 

same length, we get a realization y21, y22, ..., y2m that is independent of, but 
identically distributed to, y11, y12, ..., y1m 

 
Make n such independent runs, each using “fresh” random numbers, to get 

y11,   y12,   ...,   y1m 

y21,   y22,   ...,   y2m 
 . 
 . 
 . 

yn1,   yn2,   ...,   ynm 

Within a row:  not IID 
 
Across the ith column:  IID 
realizations of the r.v. Yi (but still not 
necessarly normally distributed) 
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Can compute a summary measure within a run, and then the summary measures 
across the runs are IID (but still not necessarily normally distributed) 
Bank with 5 tellers, one FIFO queue, open 9am-5pm, flush out before stopping 
Interarrivals ~ expo (mean = 1 min.), service times ~ expo (mean = 4 min.) 
Summary measures from 10 runs (replications): 
 

 

Clearly, there’s 
variation across runs; 
need appropriate 
statistical analysis 
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Types of Output Performance Measures 
 
What do you want to know about the system? 

Average time in system 
Worst (longest) time in system 
Average, worst time in queue(s) 
Average, worst, best number of “good” pieces produced per day 
Variability (standard deviation, range) of number of parts produced per day 
Average, maximum number of parts in the system (WIP) 
Average, maximum length of queue(s) 
Proportion of time a machine is down, up and busy, up and idle 

 
Ask the same questions of the model/code 
 
Think ahead:  Asking for additional output performance measures can change how 

the simulation code is written, or even how the system is modeled 
 
Simple queueing model: 

Server

Customers 
in queue

Customer 
in service

Customer 
arrivals

Customer 
departures

 
 
Want: Average number of customers in queue 
  Proportion of time server is busy 
 
Maybe: Average time customers spend in queue 
 
Question:  How does wanting the average time in queue affect how the model is 

coded, data structures, etc.? 
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As simulation progresses through time, there are typically two kinds of processes 
that are observed: 

 
Discrete-time process:  There is a natural “first” observation, “second” 

observation, etc.—but can only observe them when they “happen” 

Si = time in system of ith  part produced, i ∈ {1, 2, ...} 

Suppose there are M parts produced during the simulation 

i
1 2 3 M  ..................................

    Si

 
Typical discrete-time output performance measures: 

Average time in system: 
M
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Other examples of discrete-time processes: 

Di = delay of ith customer in queue 

Yi = throughput (production) during ith hour 

Bi = 1 if caller i gets a busy signal, 0 otherwise 
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Continuous-time process:  Can jump into system at any point in time (real, 
continuous time) and take a “snapshot” of something — there is no natural 
“first” or “second” observation 

Q(t) = number of parts in a particular queue at time t ∈ [0, ∞) 
Run simulation for T units of simulated time 

      Q(t )

0

1

2

3

t T  
Typical continuous-time output performance measures: 

Time-average length of queue: 
T

dttQ
TQ

T

∫
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)(  

Maximum length of queue:  )(max)(*
0

tQTQ
Tt≤≤

=  

Proportion of time that there were more than two in the queue: 

T

dttQI
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T
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= 0 ),2(
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Another important kind of continuous-time statistic:  utilizations 
 

Let 




=
t

t
tB

 at time idle isserver  if0

 at timebusy  isserver  if1
)(  

 

0

1

t T

      B(t )

 

Server utilization (proportion of time busy): 
T

dttB
TU

T

∫
= 0

)(
)(  

 
Other examples of continuous-time processes: 
 

N(t) = number of parts in shop at time t (WIP) 
 
D(t) = number of machines down at time t 
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Typically, we want to observe several (maybe lots of) different performance 
measures from the same system/model 
 
Usually low additional cost/hassle to do so, can always ignore later 
 
But not getting a particular output measure could imply rerunning 
 
 

Difficulty in statistical analysis of output with several performance measures: 
 
May want to make several simultaneous estimates, statements 
 
Be careful how this is done, what is said 
 
Multiple-comparisons problem in statistics literature (more in Sec. 9.7) 
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9.2  Transient and Steady-State Behavior of a 
Stochastic Process 
 
Output process (discrete-time) Y1, Y2, ... 
 

Let Fi(y | I) = P(Yi ≤ y | I) be the transient (cumulative) distribution of the process 
at (discrete) time i 
In general, Fi depends on both the time i and the initial condition I 
Corresponding transient density functions: 

 
If there is a CDF F(y) such that Fi(y | I) → F(y) as i → ∞ for all y and for all initial 

conditions I, then F(y) is the steady-state distribution of the output process 
F(y) may or may not exist 
F(y) must be independent of the initial conditions — same for all I 

 

Roughly speaking, if there is a time index k such that for i > k Fi(y | I) ≈ F(y) in 
some sense, then we say that the process is “in steady state” after time k 
Even though the distribution of the Yi’s after time k is not appreciably changing, 

observations on the Yi’s could still have large variance and thus “bounce 
around” a lot — they’re just not systematically trending any more 

Even in steady state, the Yi’s are generally not independent, and could be heavily 
(auto)correlated 
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Steady-state distribution does not depend on initial conditions, but the nature and 
rate of convergence of the transient distributions can depend heavily on the initial 
conditions 

 
M/M/1 queue, E(delay in queue), different number of customers s present initially: 
 

 
 
Inventory system, E(cost in month i): 
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9.3  Types of Simulations with Regard to 
Output Analysis 
 
Terminating:  Parameters to be estimated are defined relative to specific initial and 

stopping conditions that are part of the model 
 

There is a “natural” and realistic way to model both the initial and stopping 
conditions 

 
Output performance measures generally depend on both the initial and stopping 

conditions 
 
 
Nonterminating:  There is no natural and realistic event that terminates the model 
 

Interested in “long-run” behavior characteristic of “normal” operation 
 
If the performance measure of interest is a characteristic of a steady-state 

distribution of the process, it is a steady-state parameter of the model 
 

Theoretically, does not depend on initial conditions 
 
Practically, must ensure that run is long enough so that initial-condition 

effects have dissipated 
 
Not all nonterminating systems are steady-state:  there could be a periodic 

“cycle” in the long run, giving rise to steady-state cycle parameters 
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Focus on terminating vs. steady-state simulations: 
 
Which is appropriate? 

Depends on goals of the study 
Statistical analysis for terminating simulations is a lot easier 

 
Is steady-state relevant at all?  Maybe: 

24 hours/day, “lights-out” manufacturing 
Global telecommunications 
Design conservatively for peak load of infinite duration 

 
Some examples: 
 

Physical 
model 

Terminating estimand Steady-state estimand 

Single-server 
queue 

Expected average delay in 
queue of first 25 customers, 
given empty-and-idle initial 
conditions 

Long-run expected delay in 
queue of a customer 

Manufacturing 
system 

Expected daily production, 
given some number of 
workpieces in process initially 
 

Expected long-run daily 
production 

Reliability 
system 

Expected lifetime, or 
probability that it lasts at least 
a year, given all components 
initially new, working  

Probably not sensible 

Battlefield 
model 

Probability that attacking force 
loses half its strength before 
defending force loses half its 
strength 

Probably not sensible 
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9.4  Statistical Analysis for Terminating 
Simulations 
 
Make n IID replications of a terminating simulation 

 
Same initial conditions for each replication 
 
Same terminating event for each replication 
 
Separate random numbers for each replication 

 
Let Xj be a summary measure of interest from the jth replication 

e.g., Xj = the average delay in queue of all customers in the jth replication 
 
Then X1, X2, ..., Xn are IID random variables, can apply classical statistical analysis 

to them 
 
Rely on central limit theorem to justify normality assumption even though it’s 

generally not true 
 
So basic strategy is replication of the whole simulation some number n of times 
 
One simulation run is a sample of size one (not worth much statistically) 
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What About Classical Statistics? 
 
Classical statistical methods don’t work directly within a simulation run, due to 

autocorrelation usually present 
Example:  Delays in a queue of individual jobs:  D1, D2, D3, ..., Dm 

Want to estimate µ = E(average delay of the m jobs) 

Sample mean mDmD
m

i
i∑

=

=
1

)(  is an unbiased estimator for µ 

Need to estimate Var( )(mD ) for confidence intervals on µ, test hypotheses like H0: 

µ = µ0 

But “sample variance” ( ) [ ])1()(
1

2
−−∑

=

mmmDD
m

i
i  may be severely biased for 

Var( )(mD ) 

Reason: 

Corr(Di, Di + l) ≠ 0, in general 

Unbiasedness of variance estimators follows from independence of data, which 
is not true within a simulation 

Usual situation: 
Positive autocorrelation:  Corr(Di, Di + l) > 0 

Causes ( ) [ ]






 −−∑

=

)1()(
1

2
mmmDDE

m

i
i  < Var( )(mD ) — maybe far too small 

Intuition: 
Di + 1 is pretty much the same as Di 

Di’s are more stable than if they were independent 

Their sample variance is understated 
Thus, must take care to estimate variances properly: understating variances 

Have too much faith in our point estimates 
Believe our simulation results too much 
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9.4.1  Estimating Means 
 

Want:  Estimate of some parameter µ of the process 

Often (not always):  µ = E(something) 

µ = E(average delay in queue of m customers) 

µ = E(time-average WIP) 

µ = E(machine utilization) 

µ = P(average delay > 5 minutes) = E[I(5,∞)(average delay)] 

Point estimate:  µ̂ = 12.3 

How close is µ̂ to the true unknown value of µ? 

Customary, useful method for assessing precision of estimator:  confidence interval 
for µ 

Pick confidence level 1 – α (typically 0.90, 0.95, etc.) 

Use simulation output to construct an interval [A, B] that covers µ with 
probability 1 – α 

Interpretation:  100(1 – α)% of the time, the interval formed in this way will 
cover µ 

    µ (unknown)
 

Wrong interpretation:  “I’m 95% sure that µ is between 9.4 and 11.1” 
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Common approach to statistical analysis of simulation output: 
Can’t do “classical” (IID, unbiased) statistics within a simulation run 
Try to modify setup, design, to get back to classical statistics 

 
In terminating simulations, this is conceptually easy: 

Make n independent replications of the whole simulation 
Let Xj be the performance measure from the jth replication 

Xj = average of the delays in queue 

Xj = time-average WIP 

Xj = utilization of a bottleneck machine 

Then X1, X2, ..., Xn are IID and unbiased for µ = E(Xj) 

Apply classical statistics to Xj’s, not to observations within a run 

Approximate 100(1 – α)% confidence interval for µ: 

n

X

nX

n

j
j∑

== 1)(  is an unbiased estimator of µ 

1

))((

)(

2

2

−

−
=

∑
n

nXX

nS
j

 is an unbiased estimator of Var(Xj) 

n

nS
tnX n

)(
)( 2/1,1 α−−±  covers µ with approximate probability 1 – α 

(tn–1,1–α/2 = point below which is area (probability) 1–α/2 in Student’s t 
distribution with n – 1 d.f.) 

Most important point: 
The “basic ingredients” to the statistical analysis are the performance 

measures from the different, independent replications 
One whole simulation run = a “sample” of size one (not worth much) 



9-18 

Example:  n = 10 replications of single-server queue 
 
Xj = average delay in queue from jth replication 

 
Xj’s:  2.02, 0.73, 3.20, 6.23, 1.76, 0.47, 3.89, 5.45, 1.44, 1.23 

 

Want 90% confidence interval, i.e., α = 0.10 
 

)10(X  = 2.64, S2(10) = 3.96, t9, 0.95 = 1.833 

 
Approximate 90% confidence interval is 2.64 ± 1.15, or [1.49, 3.79] 

 
 
Other examples in text: 
 

Inventory model 
 
Estimation of proportions 
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Why “approximate” 90% confidence interval? 
 
Assumes Xj’s are normally distributed — never true, but does it matter? 

Central-limit theorem: 

As n (number of replications) grows, coverage probability → 1 – α 
Robustness study with this model: 

Know µ = 2.12 from queueing theory 
Pick an n (like n = 10) 

Make 500 “90%” confidence intervals (total no. runs = 10 × 500) 

Count % of these 500 intervals covering µ = 2.12: 
n Estimated coverage (want 90%) 
5 

10 
20 
40 

88% 
86% 
89% 
92% 

 
Bad news:  actual coverages can depend (a lot) on the model 

 
Reliability model: 1

2

3  
Components fail independently 

Times Ti to failure in components ~ Weibull(α = 0.5, β = 1.0) 
Time to system failure = T = min(T1, max(T2, T3)) 

µ = E(time to system failure) = 0.78 
n Estimated coverage (want 90%) 

5 
10 
20 
40 

71% 
75% 
80% 
84% 

 
Conventional wisdom:  If Xj’s are averages of something (discrete- or 

continuous-time averages), their distribution tends to be not too asymmetric, 
and this confidence-interval method usually has reasonably good coverage 
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Obtaining a Specified Precision 
 
If the number n of replication is chosen too small, the confidence intervals might 

too wide to be useful 
 
M/M/1 example: 
 

90% confidence interval from n = 10 replications:  2.64 ± 1.15, or [1.49, 3.79] 
 
Half width (1.15) is 44% of point estimate (2.64) 
 
Equivalently:  2.64 ± 44%, not very precise 

 

Half-width expression:  δ(α, n) = 
n

nS
tn

)(
2/1,1 α−−  

To decrease: α ↑:  undesirable, since α = probability of missing 

  S(n) ↓:  estimates )(Var jX , which is fixed (maybe ...) 

  n ↑:  more replications 
 

Sequential sampling:  Increase n until δ(α, n) is “small enough” 
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Two versions of what “small enough” might mean (more details in text): 
 

Absolute precision: 
 

Specify β > 0, want n big enough so that δ(α, n) < β 
 

Requires at least some knowledge of context to set meaningful β 
 

Relative precision: 
 

Specify γ (0 < γ < 1), want n big enough so that γαδ <)(),( nXn  

 

Need not know much about context to set meaningful γ 
 
Notes: 

 
Above description leaves out a few technical details; see text 
 

“Fixes” robustness issue:  As β or γ → 0, coverage probability → 1 – α 
 

Can be dangerous for small β or γ :  Required n increases quadratically as β or 
γ decrease 

 
May be difficult to automate with a simulation language, depending on modeling 

constructs available, what automated statistical capabilities present, and what 
access the user has to internal software variables 
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9.4.2  Estimating Other Measures of Performance 
 
Sometimes can miss important system/model characteristics if we look only at 

averages 
 
Other measures:  Proportions, variances, quantiles 
 
 
Proportions 
 

Compare two operating policies for queueing system with five servers 
 

vs.

 

 
 Estimates 

Performance measure Five queues Single queue 
Average delay in queue 
Average number in queue(s) 

Number of delays ≥ 20 minutes 

5.57 minutes 
5.52 
33 

5.57 minutes 
5.52 
6 
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Variances (or Standard Deviations) 
 

Interested in process variability 
 
Xj = daily production of good items 

 

Want to estimate )(Var jX  

 
Make n replications, compute S(n) as before 
 

Confidence interval on )(Var jX :  use chi-square distribution 

 
 
Quantiles 
 

Inventory system, Xj = maximum inventory level during the horizon 

 
Want to determine storage capacity that is sufficient with probability 0.98 
 

Want to find x such that P(Xj ≤ x) = 0.98 

 
One approach (more details in text): 
 

Make n replications, observe X1, X2, ..., Xn 

 
Sort the Xj’s into increasing order 

 
Estimate x to be a value below which are 98% of the Xj’s 
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9.4.3  Choosing Initial Conditions 
 
For terminating simulations, the initial conditions can affect the output performance 

measure, so the simulations should be initialized appropriately 
 
Example:  Want to estimate expected average delay in queue of bank customers 

who arrive and complete their delay between noon and 1:00pm 
 
Bank is likely to be crowded already at noon, so starting empty and idle at noon will 

probably bias the results low 
 
Two possible remedies: 
 

If bank actually opens at 9:00am, start the simulation empty and idle, let it run for 
3 simulated hours, clear the statistical accumulators, and observe statistics 
for the next simulated hour 

 
Take data in the field on number of customers present at noon, fit a (discrete) 

distribution to it, and draw from this distribution to initialize the simulation at 
time 0 = noon.  Draw independently from this distribution to initialize multiple 
replications. 
Note:  This could be difficult in simulation software, depending on the 

modeling constructs available 
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9.5  Statistical Analysis for Steady-State 
Parameters 
 
Much more difficult problem than analysis for terminating simulations 
Want to estimate (e.g. for discrete- and continuous-time processes) 







=
=

=
∞→

∞→

ttQtQE

iDDE

t

iii

 at time queuein number )())((lim

customerth  of queuein delay )(lim
ν  

Basic question for designing runs: 

Many short
runs

One long
run

X1

X2

X3

X4

X5

X1

 
 Many short runs One long run 

Good Simple (same as terminating) 
Get IID data 

Less point-estimator bias 
No restarts 

Bad Point-estimator bias (initial 
transient) 

“Sample” of size 1 
Hard to get variance estimate 
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9.5.1  The Problem of the Initial Transient 
 
If steady-state is the goal, initial conditions will generally bias the results of the 

simulation for some initial period of time 
 
Most common technique is to warm up the model, also called initial-data deletion 
 
Identify index l (for discrete-time processes) or time t0 (for continuous-time 

processes) beyond which the output appears not to be drifting any more 
Clear statistical accumulators at that time 
Start over with data collection, and “count” only data observed past that point 

 
After warmup period, observations will still have variance, so will bounce around 

— they are just not “trending” any more 
 
Facility for doing this in most simulation software (but the user must specify the 

warmup period) 
 
Challenge — identifying a warmup period that is long enough, yet no so long as to 

be excessively wasteful of data — see text for details and examples 
Some statistical-analysis tests have been devised 
Most practical (and widely-used) method is to make plots, perhaps averaged 

across and within replications to dampen the noise, and “eyeball” a cutoff 
If there are multiple output processes, and if they disagree about what the 

appropriate warmup period is, a decision must be made whether to use 
different warmups for each process, or to use the same one for each process 
— which would have to be the maximum of the individual warmups, to be 
save, and so would be conservative for most of the output processes 

 
A different approach:  Try to find “smarter” initialization states or distributions that 

are “closer” to steady-state than something like “empty and idle” 
There has been some research on how to find such initial states/distributions 
“Priming” the model initially with entities may be tricky in simulation software 
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9.5.2  Replication/Deletion Approaches for Means 
 
Assume that an appropriate warmup period has been determined 
 
Xj = output measure on jth replication, collected only past warmup point 
 
Proceed with statistical analysis exactly as in terminating case 

Make independent replications, each warmed up 
Compute mean, variance estimates across replications, confidence intervals 

 
Advantages (compared to methods to be discussed below): 

Simple — aside from warmup, the same as for terminating simulations 
Get truly IID observations — important not only for variance estimation and 

confidence-interval construction, but also for more sophisticated statistical 
goals and techniques to be discussed in Chap. 10–12 

 
Disadvantages: 

No completely reliable method to identify an appropriate warmup 

Too long ⇒  wasteful of data 

Too short ⇒ point-estimator bias, which can have serious consequences, 
especially if used in concert with a sequential procedure: 

)(nX  is no longer an unbiased estimator of ν 

Confidence interval is centered in the –wrong” place— at E[ )(nX ] ≠ ν 

As n ↑, confidence interval shrinks down around the wrong point, causing 
coverage to drop 

      E X (n )[ ] ≠

      n =10

      n = 20

      n = 30

      n = 40

    ν    (unknown)  
 

Work harder, 
do worse (in coverage sense) 
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9.5.3  Other Approaches for Means 
 
Make just one “replication,” presumably to ameliorate initial bias 
 

Point estimator of ν:  average )(mY  of all the data Y1, Y2, ..., Ym in the run 

 

Problem:  How to estimate Var( )(mY ), needed to get c.i.’s, etc.? 

 

Know one way not to do this:  ( ) [ ])1()(
1

2
−−∑

=

mmmYY
m

i
i  

 

Several methods to estimate Var( )(mY ): 

Batch means 
Time-series models 
Spectral analysis 
Standardized time series 

 
A different one-long-run approach (different point estimator): 

Regenerative method 
 
Two alternative modes of operation: 

Fixed-sample size procedures — select run length m in advance, precision not 
controlled 

Sequential procedures — prespecify precision, increase run length m as needed 
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Batch Means 
 
Divide the run (of length m) into n contiguous “batches” of length k each (m = nk) 
 

Let )(kY j  be the (batch) mean of the jth batch of size k 

i

    Yi

k k k k k

      Y 1       Y 2       Y 3       Y 4       Y 5     m = nk
 

Pretend:  )(kY j ’s are IID, unbiased for ν 

Note:  )(

)(
11 mY
m

Y

n

kY
m

i
i

n

j
j

==
∑∑

== , i.e., mean of batch means is the “grand” mean 

Form “sample variance” among the batch means, 

( )
1

)()(

)( 1

2

2

−

−
=

∑
=

n

mYkY

nS

n

j
j

Y
 

 

Approximate 100(1 – α)% confidence interval for ν:  
n

nS
tmY Y

n

)(
)( 2/1,1 α−−±  

(k) (k) (k) (k) (k) 
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Appeals of batch means: 
Simple (relatively) 
Often works fairly well (in terms of coverage) 
Automatically implemented in some simulation software 

 
 
Issues with batch means (see text for more details and references): 

Choose batches big enough so that )(kY j ’s are approximately uncorrelated 

Otherwise, )(2 nSY  can be biased (usually low) for Var( )(kY j ), causing 

undercoverage 
How to choose batch size k?  Equivalently, how many batches n? 

Evidence:  It may never pay to have more than n = 20 or 30 batches 
Reason:  Due to autocorrelation, splitting run into a larger number of smaller 

batches, while increasing degrees of freedom, degrades the quality 
(variability) of each individual batch 

 
Generalizations of batch means 

Overlapping batch means 
Separated batches 
Weighting points within the batches 

 
Sequential batch-means methods to control confidence-interval width 

Fix the number n of batches 
Increase overall run length m 
Increase batch size k proportionally to increase in m 
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Time-Series Models 
 
Assume a relatively simple statistical model for the output process 

Discrete-time output process Y1, Y2, ... with steady-state mean ν 

As with batch means, use overall average )(mY  as point estimator of ν 

Examples of statistical models for output process: 
Autoregressive of order 2 (AR(2)): 

Yi = ν + φ1(Yi–1 – ν) + φ2(Yi–2 – ν) + εi, εi’s IID N(0, σ2) 
Autoregressive moving average of order (2, 1) (ARMA(2, 1)): 

Yi = ν + φ1(Yi–1 – ν) + φ2(Yi–2 – ν) + θ1εi–1 + εi, εi’s IID N(0, σ2) 
 
In general, for ARMA(p, q) model: 

Use simulation output to identify (estimate) p and q — get p̂  and q̂  (several 
methods exist) 

Estimate parameters via regression (least-squares) —  (“fit the model”): 

2

ˆ21

ˆ21

ˆ

ˆ,...,ˆ,ˆ

ˆ,...,ˆ,ˆ

σ

θθθ

φφφ

q

p

 

Under this model, Var( )(mY ) = g(φ1, φ2, ..., φp, θ1, θ2, ..., θq, σ2) (the 
function g is known but messy) 

Estimate Var( )(mY ) by g( 2
ˆ21ˆ21 ˆ,ˆ,...,ˆ,ˆ,ˆ,...,ˆ,ˆ σθθθφφφ qp ) 

 
Appeals of time-series models: 

Physical intuition 
Some theoretical support — most processes can be approximated by an 

ARMA(p, q) if we’re willing to admit large p and q 
 
Issues with time-series models: 

Computation involved for the “fit” 
Specifying degrees of freedom for variance estimator 
Robustness questions — any better than batch means? 
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Spectral Analysis 
 
Assume that output process is covariance-stationary: 

Cov(Yi, Yi + j) = Cj, i.e., it depends only on j, and not on i 

Fairly mild assumption, especially after some warmup 

Then 
m

CmjC

mY

m

j
j∑

−

=

−+
=

1

1
0 )/1(

))((Var  

Estimate Cj, j = 1, 2, ..., m – 1 from output data:  

( )( )
jm

mYYmYY
C

jm

i
jii

j −

−−
=

∑
−

=
+

1

)()(
ˆ  

Plug jĈ ’s into formula for Var( )(mY ) in place of corresponding Cj’s 

 
Appeals of spectral analysis: 

Using an exact variance formula 
Relationship to other methods (overlapping batch means) 

 
Issues with spectral analysis: 

For large m (as we’d expect), computationally burdensome to get all the
 jĈ ’s — 

number of operations is about m2/2 
Remedy:  Computational device — Fast Fourier Transform 

For j near the end (m – 1), jĈ will be based on only a few terms, so will itself be 

highly variable—in fact, for j = m – 1, ( )( ))()(ˆ
11 mYYmYYC mm −−=− , which 

is based on only one term in the sum 
Remedy:  Use different weights — spectral window — in sum for estimate 

of Var( )(mY ) 
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Regenerative Method 
 

Different approach to gathering data — do not use )(mY  as point estimator for ν 

 
Assume output process is regenerative: 

Can identify a sequence of random indices 1 ≤ B1 < B2 < ... such that: 

Starting from each index Bj, the process from then on follows the same 
probability distribution as does the process from any other Bj 

The process from index Bj on is independent of the process before Bj 

 
This divides the process into IID cycles (or tours): 

M

11

11

322

211

,...,,

,...,,

−+

−+

BBB

BBB

YYY

YYY

 

Most familiar example: 
Single- or multiple-server queue 
Any interarrival, service-time distributions 
Yi = Di = delay in queue of ith arriving customer 

Bj = index of the jth customer who arrives to find the whole system empty of 
other customers and all servers idle 

For single-server case, a customer begins a regeneration cycle if and only if 
delay in queue is zero (not true for multiple servers) 

i

    Di

      B 1
=
1

      B
2

=
6

      B
3

=
8

      B
4

=
13

      B
5

=
14

      B
6

=
20

 



9-34 

Comparable random variables defined on successive cycles are IID 
 
Nj = Bj + 1 – Bj = length of jth cycle 

 

∑
−

=

+

=
11j

j

B

Bi
ij YZ  = sum of the observations in the jth cycle 

 

Can show (renewal reward theory):  ν = E(Zj)/E(Nj) 

 

Make a simulation run of n′ cycles (don’t stop in the middle of a cycle) 
 

For j = 1, 2, ..., n′, let Uj = (Zj, Nj)
T; these are IID random vectors 

 

Point estimator for ν:  
)(
)(

ˆ
nN
nZ

′
′

=ν , which is biased, but strongly consistent 
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Variance estimation, confidence interval: 
 

Let ΣΣ  = 








2212

1211

σσ
σσ

 be the covariance matrix of Uj 

 

Define Vj = Zj – ν Nj, which is unobservable, but has mean zero, variance 

22
2

1211
2 2 σννσσσ +−=V  

 
Central-limit theorem applied to Vj’s: 

→
′

′−′ D

V n

nNnZ
2

)()(

σ

ν
 N(0, 1) as n′ → ∞ 

 

Need to estimate 2
Vσ : 

Estimate ΣΣ  by  
[ ][ ]

1

)()(

)(ˆ)(ˆ

)(ˆ)(ˆ 1

2212

1211

−′

′−′−
=








′′
′′ ∑

′

=

n

nn

nn

nn

n

j

T

jj UUUU

σσ
σσ

 

 

Let [ ] )(ˆ)(ˆ)(ˆ)(ˆ2)(ˆ)( 22
2

1211
2 nnnnnnV ′′+′′−′=′ σνσνσσ , which is strongly 

consistent for 2
Vσ  

 

Can replace 2
Vσ  in above CLT by )(ˆ 2 nV ′σ  (continuous mapping thm.): 

→
′

′−′ D

V n

nNnZ
2ˆ

)()(

σ

ν
 N(0, 1) as n′ → ∞ 

 

Manipulate to get asymptotically valid 100(1 – α)% confidence interval for ν: 

)(

)(ˆ
)(ˆ

2
2/1

nN

nnz
n V

′

′′
±′ − σ

ν α  
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Appeals of regenerative method: 
 
Firm mathematical foundation—asymptotic validity guarantees proper coverage 

probability (1 – α) as n′ → ∞ 
 
 
Issues with regenerative method: 

 
Underlying process must be regenerative — not universally true 
 
Must identify regeneration points (proof), code their recognition into program, 

gather data differently 
 
Asymptotic validity depends on having a lot of cycles — if cycles tend to be 

long (as they often do in complicated models) we may be able to observe 
only a few cycles, and asymptotic validity doesn’t kick in 

 
There are other ways to get a confidence interval (notably jackknifing; see text) 
 
Sequential-sampling versions have been developed—keep simulating more 

cycles until the confidence interval is small enough 
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Standardized Time Series 
 
Classical univariate statistics: 
 

Take IID sample X1, X2, ..., Xn 

 

Want to estimate µ = E(Xi) 

 
“Standardize” univariate data: 

)1,0(N
)( ofdeviation  standard of Estimate

unknown )(
→

− D

nX

nX µ
 

 
Basis for inference (confidence intervals, hypothesis tests, ...) 

 
 
Observing a process (via simulation): 

 
Observe the process Y1, Y2, ..., Ym 

 

Want to estimate )(lim ii
YE

∞→
=ν  

 
“Standardize” process data: 

→
− Di

Y

Y

i ofdeviation  standard of Estimate

unknown ν
Brownian bridge process 

(Brownian bridge process is fully understood, like N(0, 1) 
 
Basis for inference (confidence intervals, hypothesis tests, ...) 
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Specifics: 
 

Observe process Y1, Y2, ..., Ym 

Point estimator: )(mY , like batch means, time-series models, spectral analysis 

Form n batches of size k each (m = nk), as for batch means 

For large m, )(mY  is approximately normal with mean ν and variance τ2/m 

where τ2 = ))((Varlim mY
m ∞→

 

Let ( )∑ ∑∑
= = =

−+ 




 −
−

=
n

j

k

s

s

i
kjij YkY

kk
A

1

2

1 1
)1(3

)(
12

 

As k → ∞, A/τ2 → χ2 distribution with n d.f., and is independent of )(mY  

So for large k, 
( )

)(

)()(
2

2

mnA

mY

n

A

mmY ν

τ

τν −
=

−
 

has an approximate t distribution with n d.f., so an asymptotically valid 

confidence interval for ν is )()( 2/1, mnAtmY n α−±  

 
Appeals of standardized time series: 

Firm mathematical foundation—asymptotically valid intervals 
Assumptions are much weaker than for regenerative method 
Relatively simple 

 
Issues with standardized time series: 

As with all asymptotic, methods, how long is long enough? 
Above is called “area” approach — A represents area under the standardized 

Brownian bridge 
Other approaches look instead at the maximum attained by the standardized 

Brownian bridge 
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Summary of Steady-State Estimation Procedures 
 
 
Nothing will work well if computational budget is unduly limited 
 
Batch means, spectral analysis, standardized time series display generally good 

performance (with respect to coverage probability, efficiency of data usage) 
 
Simplicity might argue against spectral analysis 
 
Sequential-sampling versions exist for most of the main methods, to control 

confidence-interval width 
 
Performance measures other than means (variances, proportions, quantiles) have 

been investigated 
 
It may be difficult to implement these methods in the context of some existing 

simulation software, though some software does allow for, and even builds in 
and automates, some of these methods 
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9.5.4  Estimating Other Measures of Performance 
 
 
Means do not always provide the one and only appropriate measure of performance 
 
 

Probabilities:  For some set B, estimate p = P(Y ∈ B), where Y is the steady-state 
random variable of the process Y1, Y2, ... 
 
e.g., Y = delay of a message, B = (0, 5 minutes), so p is the probability that a 

message is delayed by less than 5 minutes 
 
This is a special case of estimating means, if we define the indicator random 

variable 






 ∈

=
otherwise0

 if1 BY
Z , then p = P(Y ∈ B) = P(Z = 1) = 1×P(Z = 1) + 

0×P(Z = 0) = E(Z) 
 
Thus, can use all the methods described above for means to estimate a 

proportion 
 
 

Quantiles:  The q-quantile yq is the value such that P(Y ≤ yq) = q 
 
e.g., Y = delay of a message, y0.75 is the value below which are 75% of the 

message delays 
 
See text for details on methods for estimating quantiles based on order statistics, 

batch means, and regenerative methods 
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9.6  Statistical Analysis for Steady-State 
Cycle Parameters 
 
To dichotomize simulations into terminating vs. steady-state is a bit of an 

oversimplification: 
 
Manufacturing model, has 8-hour shifts 
 
Simulating in detail what goes on within a shift 
 
Performance might fluctuate widely within a shift 
 
But what matters is the production (say) over the whole shift 
 
Aggregate the data so that a “basic” observation Yi is the production on the ith 

shift 
 
Steady-state cycle (e.g., cycle = shift) parameter:  steady-state mean of process 

defined over a cycle as a “unit” of time 
 
Use above steady-state methods, except applied to random variables defined 

over a cycle, rather than individually at their finest level of detail 
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Example: 
 
Production process, shift = 8 hours, lunch break 4 hours into each shift 
 
Ni = production in hour i; would expect it to drop in 4th hour; plot averaged 

over 10 replications: 
 

 
C
iN  = production in shift i; plot averaged over 10 replications: 

 

 
 

No 
steady-
state 

Seems to 
have a 
steady-
state; use 
earlier 
methods 
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9.7  Multiple Measures of Performance 
 
Usually:  Want to observe several performance measures from a large simulation 

Average length of queue(s) 
Maximum length of queue(s) 
Utilization(s) 
Throughput(s) 

 
Difficulty: 

Estimate each (expected) performance measure with a confidence interval 
Any of the intervals could “miss” its expected performance measure 
Must be careful about overall statements of coverage (i.e., that all intervals 

contain their expected performance measures simultaneously) 
Sometimes called the problem of multiple comparisons 

 
Have k output performance measures, want overall (familywise) probability of at 

least 1 – α that the confidence intervals for them all contain their target expected 
performance measures 

 
For s = 1, 2, ..., k, suppose the confidence interval for performance measure s is at 

confidence level 1 – αs 

Then P(all intervals contain their respective performance measures) ≥ 1 – ∑
=

k

s
s

1

α  

(Bonferroni inequality) 

Thus, pick αs’s so that αα =∑
=

k

s
s

1

 

Could pick αs = α/k for all s, or pick αs’s differently with smaller αs’s for the more 
important performance measures 

 

Obvious problem:  For large k and reasonable overall α, the individual αs’s could 
become tiny, making the corresponding confidence intervals enormous 
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Alternative Approach 
 
Use multivariate statistical methods to get a joint confidence region (not necessarily 

a rectangle) that covers expected-performance-measure vector with probability 1 
– α 

 
Example: 

k = 2 performance measures µ1 and µ2 

Bonferroni approach:  Separate intervals for µ1 and µ2 

Multivariate approach:  Ellipse containing (µ1, µ2) with probability 1 – α 

    µ1

    µ2

    

100(1 − α1)% confidence
interval for µ1

    

100(1− α2)%  confidence
interval for µ2

    

Bonferroni " box "
≥100(1 − α)%  confidence
region     

100(1 − α)%  
confidence ellipse

 
Specific multivariate methods: 

Multivariate batch means 
Multivariate spectral analysis 
Multivariate time-series methods 

 
Appeal of multivariate methods: 

Smaller area (volume) with multivariate methods 
 
Issues with multivariate methods: 

Complexity 
Practical interpretation 
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9.8  Time Plots of Important Variables 
 
So far, have concentrated on performance measures over the course of the whole 

simulation run 
Averages 
Variances 
Extrema 
Proportions 
Quantiles 

 
But these may mask important dynamic (within-run) behavior patterns 

Periodicities 
Explosions 
Learning 

 
Ways to pick up such dynamic behavior 

Plot output processes (discrete or continuous) 
Animation 

 


