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0.1 Introduction

Basic, most serious disadvantage of smulation:
With a stochastic smulation, don’t get exact “answers’ from run

Two different runs of same mode b different numerical results

Random inpuit: : : Random output:
Random numbers ® Simulation ® Performance
a model/code
Random variates Measures

Thus, the output performance measures.
Really observations from their probability distribution
Ask questions about this distribution:
Mean (expected value): E(average WIP)

Variance: Var(average WIP)
Probabilities: P(average WIP > 250)
Quantiles: What vaue of xissuch that P(avg. WIP > x) £ 0.02?

Interpreting Smulation output: statistical analysis of output data

Failure to recognize, deal with randomness in smulation output can lead to serious
errors, misinterpretation, bad decisions

Also, must take care to use appropriate statistical methods, since smulation output
data are usually nonstationary, autocorrelated, and non-normal, contrary to
assumptions behind classical 11D statistical methods

Enhanced computer power and speed is making it much easier to carry out
appropriate smulation studies and analyze the output properly
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The Statistical Nature of Simulation Output

Let Y, Y,, ... be an output process from a single smulation run
Y; = delay in queue of ith arriving customer
Y; = productionin ith hour in afactory

Y;'s are random variables that are generally neither independent nor identically
distributed (nor normaly distributed), so classical 11D normal-theory statistical
methods don’'t apply directlytothe Y;'s

Let Va1, Vios ..., Yam De arealization of the random variables Y, Y5, ..., Y, resulting
from making a single smulation run of length m observations, using a particular
stream of underlying U(O, 1) random numbers.

If we use a separate stream of random numbers for another smulation run of this

same length, we get aredization sy, Vs, ..., Yom that isindependent of, but
identically distributed to, Y1, Vi, ..., Yim

Make n such independent runs, each using “fresh” random numbers, to get

Yo Yizo e Yim Within arow: not [ID
Yo, Yoor ey Yom

' Acrossthe ith column: 11D

- realizations of ther.v. Y; (but still not
Yor, Yoo, - Yom necessarly normallv distributed)
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Can compute a summary measure within a run, and then the summary measures
acrosstherunsare I1D (but still not necessarily normally distributed)

Bank with 5 tellers, one FIFO queue, open 9am-5pm, flush out before stopping
Interarrivals ~ expo (mean = 1 min.), service times ~ expo (mean = 4 min.)
Summary measures from 10 runs (replications):

Average delay Proportion of
Number Finish time in queue Average queue  customers delayed
Replication  served (hours) (minutes) length < 5 minutes
1 484 8.12 1.53 1.52 0.917
2 475 8.14 1.66 1.62 0.916 C|ea'|y' there's
3 484 8.19 1.24 1.23 0.952 ..
4 483 8.03 2.34 2.34 0.822 variation across runs,
5 455 8.03 2.00 1.89 0.840 i
6 461 8.32 1.69 1.56 0.866 nee_d _approprl at_e
7 451 8.09 269 2.50 0.783 sdidtica andyss
8 486 8.19 2.86 2.83 0.782
9 502 8.15 1.70 1.74 0.873
10 475 8.24 2.60 2.50 0.779
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Types of Output Perfor mance M easur es

What do you want to know about the system?
Average time in system
Worst (longest) time in system
Average, worst time in queue(s)
Average, worst, best number of “good” pieces produced per day
Variability (standard deviation, range) of number of parts produced per day
Average, maximum number of partsin the system (WIP)
Average, maximum length of queue(s)
Proportion of time a machine is down, up and busy, up and idle

AsKk the same questions of the model/code

Think ahead: Asking for additiona output performance measures can change how
the smulation code is written, or even how the system is modeled

Simple queueing modd:
Server
Customer — > — > Customer
arrivals O O O OCustor%r departures
Customers ) .
in queue in service

Want:  Average number of customers in queue
Proportion of time server is busy

Maybe: Average time customers spend in queue

Question: How does wanting the average time in queue affect how the modd is
coded, data structures, etc.?
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As simulation progresses through time, there are typically two kinds of processes
that are observed:

Discrete-time process. Thereisanatura “first” observation, “second”
observation, etc.—but can only observe them when they “happen”

S =timein system of ith part produced, i T {1, 2, ...}

Suppose there are M parts produced during the smulation

o o °

Si ° ° o

Typical discrete-time output performance measures.

g
_ . as
Average time in system: S(M) = %
Maximumtimeinsystem: S*(M)= max S,
Proportion of parts that were in system more than 60 minutes:

M

(]
P (M)-iaJlI(BO%)(S) where | (S)—i'1 5 >80
Y ! (6017720 if S £60

Other examples of discrete-time processes:
Di = delay of ith customer in queue
Y; = throughput (production) during ith hour
Bi = 1if caler i gets abusy signal, O otherwise
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Continuous-time process. Can jump into system at any point in time (red,
continuous time) and take a “ snapshot” of something — thereisno naturd
“first” or “second” observation
Q(t) = number of partsin a particular queue at timet1 [0, ¥)

Run simulation for T units of smulated time

3 —]
2 — D - -_——
Q(t)
1 — CEEE—— CE—
O —  —
t T
Typical continuous-time output performance measures.
T
| __ QQuydt
Time-average length of queue: Q(T) = B
Maximum length of queue: Q*(M = E??T( Q(t)
t

Proportion of time that there were more than two in the queue:
T

_Q | o) (Q(t)) dt
- T

P (T)
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Another important kind of continuous-time statistic: utilizations

il if serverisbusy a timet
Let B) =1 . . .
10 if serverisideattimet

1L -
0]

S B(t) dt
Server utilization (proportion of time busy): U(T) = T

Other examples of continuous-time processes.
N(t) = number of partsin shop at time t (WIP)

D(t) = number of machines down at time t
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Typicaly, we want to observe severa (maybe lots of) different performance
measures from the same system/model

Usudly low additional cost/hassle to do so, can always ignore later

But not getting a particular output measure could imply rerunning

Difficulty in satistical anaysis of output with severa performance measures.
May want to make severa Smultaneous estimates, statements
Be careful how thisis done, what is said

Multiple-comparisons problem in statistics literature (more in Sec. 9.7)
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0.2 Transient and Steady-State Behavior of a
Stochastic Process

Output process (discrete-time) Yy, Yo, ...

Let Fi(y [ 1) = P(Y; £y | 1) bethe transient (cumulative) distribution of the process
at (discrete) timei

In generd, F; depends on both the time i and theinitia condition |
Corresponding transient density functions:

A
Observation k + 1

“steady state” begins
Transient densities

o
Y/ I
N

[ Not necessarily a
normal density

If thereisa CDF F(y) suchthat Fi(y|1) ® F(y) asi ® ¥ fordl yandfor dl initid
conditions I, then F(y) is the steady-state distribution of the output process
F(y) may or may not exist
F(y) must be independent of the initial conditions — samefor al |

Roughly speaking, if thereisatime index k such that for i > k Fi(y | 1) » F(y) in
some sense, then we say that the processis “in steady state” after time k

Even though the distribution of the Y; s after time k is not appreciably changing,
observations on the Y;'s could still have large variance and thus “bounce
around” alot — they’re just not systematically trending any more

Even in steady state, the Y;'s are generally not independent, and could be heavily
(auto)correlated
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Steady-state distribution does not depend on initial conditions, but the nature and
rate of convergence of the transient distributions can depend heavily on the initial
conditions

M/M/1 queue, E(delay in queue), different number of customers s present initidly:

EDy)

Inventory system, E(cost in month i):

E(C)

11211 c
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9.3 Typesof Simulationswith Regard to
Output Analysis

Terminating: Parametersto be estimated are defined relative to specific initial and
stopping conditions that are part of the model

Thereisa“natural” and redistic way to modd both the initial and stopping
conditions

Output performance measures generally depend on both the initial and stopping
conditions

Nonterminating: Thereisno natura and redlistic event that terminates the model
Interested in “long-run” behavior characteristic of “normal” operation

If the performance measure of interest is a characteristic of a steady-state
distribution of the process, it is a steady-state parameter of the model

Theoretically, does not depend on initial conditions

Practically, must ensure that run is long enough so that initia-condition
effects have dissipated

Not al nonterminating systems are steady-state: there could be a periodic
“cycle” inthe long run, giving rise to steady-state cycle parameters
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Focus on terminating vs. steady-state smulations:

Which is appropriate?
Depends on goals of the study
Statistical analysis for terminating smulationsis a lot easier

|'s steady-state relevant at al? Maybe:
24 hourg/day, “lights-out” manufacturing
Global telecommunications
Design conservatively for peak load of infinite duration

Some examples:

Physicd Terminating estimand Steady-state estimand
model
Sngle-server | Expected average delay in Long-run expected delay in
gueue queue of first 25 customers, | queue of a customer
given empty-and-idleinitia
conditions
Manufacturing | Expected daily production, Expected long-run daily
system given some number of production

workpieces in process initialy

Rdiability Expected lifetime, or Probably not sensible
system probability that it lasts at least
ayear, given al components
initialy new, working

Battlefield Probability that attacking force | Probably not sensible
model loses half its strength before
defending force loses half its
strength
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9.4 Statistical Analysisfor Terminating
Simulations

Make n I1D replications of aterminating Ssmulation
Same initia conditions for each replication
Same terminating event for each replication

Separate random numbers for each replication

Let X; be asummary measure of interest from the jth replication
e.g., X; = the average delay in queue of all customersin the jth replication

Then Xy, X,, ..., X, are lID random variables, can apply classicd statistica analysis
to them

Rely on centra limit theorem to justify normality assumption even though it’s
generdly not true

S0 basic strategy is replication of the whole ssimulation some number n of times

One smulation run is a sample of size one (not worth much statistically)
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What About Classical Statistics?

Classical statistical methods don’t work directly within a smulation run, due to
autocorrelation usually present

Example: Delaysin aqueue of individud jobs. Di, Do, D3, ..., Dm
Want to estimate m= E(average delay of the m jobs)
Samplemean D(m) = § D, /m is an unbiased estimator for m
i=1
Need to estimate Var(D (m)) for confidence intervals on m test hypotheses like Ho:
m=ny

But “sample variance’ ém (Di - 5(m))2/[n‘(m— 1)] may be severely biased for
i=1
Var(D(m))
Reason:
Corr(Dj, Dj+1) * O, in generd
Unbiasedness of variance estimators follows from independence of data, which
Is not true within asmulation
Usua stuation:
Positive autocorrelation: Corr(Dj, Dj+1) >0

Causes Eiém (Di - 5(m))2/‘n‘(m— J)]g < Var(D(m)) — maybe far too small

li=1
Intuition:
Dj + 1 is pretty much the same as Dj
Di’'s are more stable than if they were independent
Their sample variance is understated
Thus, must take care to estimate variances properly: understating variances
Have too much faith in our point estimates
Bdieve our smulation results too much
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9.4.1 Estimating Means

Want: Estimate of some parameter mof the process
Often (not dways): m= E(something)
m= E(average ddlay in queue of m customers)
m= E(time-average WIP)
m= E(machine utilization)
m= P(average delay > 5 minutes) = E[l(5 y)(average delay)]
Point estimate; ir = 12.3
How closeis fr to the true unknown value of nf?

Customary, useful method for assessing precision of estimator: confidence interval
form
Pick confidence level 1 —a (typicaly 0.90, 0.95, etc.)
Use smulation output to construct an interval [A, B] that covers mwith
probability 1 —a
Interpretation: 100(1 — a)% of the time, the interval formed in this way will
cover m

m(unknown)

Wrong interpretation: “I’m 95% sure that mis between 9.4 and 11.1"
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Common approach to dtatistical analysis of simulation outpuit:
Can't do “classical” (11D, unbiased) statistics within a simulation run
Try to modify setup, design, to get back to classical statistics

In terminating Smulations, thisis conceptualy easy:
Make n independent replications of the whole simulation
Let X; be the performance measure from the jth replication

X; = average of the delaysin queue
X; = time-average WIP
X; = utilization of a bottleneck machine
Then X3, X2, ..., Xp are 1D and unbiased for m= E(X;)
Apply classical statisticsto X's, not to observations within arun

Approximate 100(1 — a )% confidence interval for nt

a X,
X(n) =22 isan unbiased estimator of m
n

a (X, - X(ny?

S?(n) = 1 is an unbiased estimator of Var(X;)

— S(n) . : .

X(N)tt, 1140 T covers mwith approximate probability 1 — a
n

(th11-a/2 = point below which is area (probability) 1-a/2 in Student’st
distribution with n — 1 d.f.)

Most important point:

The “basic ingredients’ to the statistical analysis are the performance
measures from the different, independent replications

One whole simulation run = a*“samplée’ of size one (not worth much)
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Example: n = 10 replications of Sngle-server queue
X; = average delay in queue from jth replication
Xj's. 2.02,0.73, 3.20, 6.23, 1.76, 0.47, 3.89, 5.45, 1.44, 1.23
Want 90% confidence intervd, i.e.,, a = 0.10
X (10) = 2.64, S°(10) = 3.96, tg .95 = 1.833

Approximate 90% confidence interval is2.64 + 1.15, or [1.49, 3.79]

Other examplesin text:
Inventory model

Estimation of proportions
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Why “approximate’ 90% confidence interval?

Assumes X;'s are normally distributed — never true, but does it matter?
Central-limit theorem:

As n (number of replications) grows, coverage probability ® 1—a
Robustness study with this modd:

Know m= 2.12 from queueing theory

Pick an n (like n = 10)

Make 500 “90%" confidence intervals (total no. runs= 10" 500)

Count % of these 500 intervals covering m= 2.12:

n Estimated coverage (want 90%)
5 88%

10 86%

20 89%

40 92%

Bad news. actual coverages can depend (alot) on the model

Reliability modd: —

Components fail independently

Times T, to failure in components ~ Weibull(a = 0.5, b = 1.0)
Timeto system faillure=T = min(T,, max(T,, T3))

m= E(time to system failure) = 0.78

n Estimated coverage (want 90%)
5 71%

10 75%

20 80%

40 84%

Conventional wisdom: If X;’s are averages of something (discrete- or
continuous-time averages), their distribution tends to be not too asymmetric,
and this confidence-interval method usually has reasonably good coverage

9-19



Obtaining a Specified Precision

If the number n of replication is chosen too small, the confidence intervals might
too wide to be useful

M/M/1 example:
90% confidence interval from n = 10 replications. 2.64 + 1.15, or [1.49, 3.79]
Half width (1.15) is 44% of point estimate (2.64)

Equivaently: 2.64 £ 44%, not very precise

, : S
Haf-width expresson: d(@,n) =t, ;. ./» S
7 dn
Todecrease: a  -: undesirable, since a = probability of missing

Sn) : edimates . /Var(X,), whichisfixed (maybe...)

n -: morereplications

Sequential sampling: Increase n until d(a, n) is“small enough”
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Two versons of what “small enough” might mean (more details in text):
Absolute precision:
Specify b > 0, want n big enough sothat d(a, n) <b
Requires at |east some knowledge of context to set meaningful b
Relative precision:
Specify g (0 < g< 1), want n big enough so that d (a,n)/X(n)<g
Need not know much about context to set meaningful g
Notes:

Above description leaves out afew technical details; see text
“Fixes’ robustnessissue: Asb or g® O, coverage probability ® 1—a

Can be dangerousfor small b or g: Required n increases quadratically as b or
g decrease

May be difficult to automate with a smulation language, depending on modeling
constructs available, what automated statistical capabilities present, and what
access the user has to interna software variables
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9.4.2 Estimating Other M easures of Perfor mance

Sometimes can miss important system/model characteristics if we look only at
averages

Other measures. Proportions, variances, quantiles

Proportions

Compare two operating policies for queueing system with five servers

OO O] OL]
O O OL]
OO0 w OOO0OO0OOO O]
OO OL] OL]
O Ol oL
Estimates
Performance measure Five queues Single queue
Average delay in queue 5.57 minutes 5.57 minutes
Average number in queue(s) 5.52 5.52
Number of delays3 20 minutes |33 6
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Variances (or Standard Deviations)
Interested in process variability

X; = daily production of good items

Want to etimate ,/Var (X )

Make n replications, compute §(n) as before

Confidence interval on _/Var(X ;)1 use chi-square distribution

Quantiles

Inventory system, Xj = maximum inventory level during the horizon
Want to determine storage capacity that is sufficient with probability 0.98
Want to find x such that P(X; £ x) = 0.98
One approach (more details in text):

Make n replications, observe X1, X2, ..., Xn

Sort the X;’s into increasing order

Estimate X to be a vaue below which are 98% of the Xj's
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9.4.3 Choosing Initial Conditions

For terminating Simulations, the initia conditions can affect the output performance
measure, so the ssimulations should be initialized appropriately

Example: Want to estimate expected average delay in queue of bank customers
who arrive and complete their delay between noon and 1:00pm

Bank islikely to be crowded already at noon, so starting empty and idle at noon will
probably bias the results low

Two possible remedies:

If bank actually opens at 9:00am, start the simulation empty and idle, let it run for

3 smulated hours, clear the statistical accumulators, and observe statistics
for the next amulated hour

Take datain the field on number of customers present at noon, fit a (discrete)
digtribution to it, and draw from this distribution to initialize the smulation at
time O = noon. Draw independently from this distribution to initidize multiple
replications.

Note: This could be difficult in smulation software, depending on the
modeling congtructs available
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0.5 Statistical Analysisfor Steady-State
Parameters

Much more difficult problem than analysis for terminating Ssmulations

Want to estimate (e.g. for discrete- and continuous-time processes)
ll|®rr¥1 E(D,) D, =ddayin queueof ith customer

" % lim E(Q(t)) Q(t) = number in queueat timett

Basic question for designing runs.

Many short One long
runs run

—> X1
o =

Many short runs One long run
Good | Smple (same as terminating) Less point-estimator bias
Get IID data No restarts
Bad | Point-estimator bias (initial “Sample’ of sizel
trandent) Hard to get variance estimate
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9.5.1 TheProblem of thelnitial Transient

If steady-state isthe god, initid conditions will generaly bias the results of the
smulation for some initia period of time

Most common technique is to warm up the model, also called initial-data deletion

Identify index | (for discrete-time processes) or time t, (for continuous-time
processes) beyond which the output appears not to be drifting any more

Clear gatistical accumulators at that time
Start over with data collection, and “count” only data observed past that point

After warmup period, observations will still have variance, so will bounce around
— they are just not “trending” any more

Facility for doing thisin most simulation software (but the user must specify the
warmup period)

Chdlenge — identifying awarmup period that is long enough, yet no so long asto
be excessively wasteful of data — see text for details and examples

Some statistical-analysis tests have been devised

Most practica (and widely-used) method is to make plots, perhaps averaged
across and within replications to dampen the noise, and “eyeball” a cutoff

If there are multiple output processes, and if they disagree about what the
appropriate warmup period is, a decison must be made whether to use
different warmups for each process, or to use the same one for each process
— which would have to be the maximum of the individua warmups, to be
save, and so would be conservative for most of the output processes

A different gpproach: Try to find “smarter” initialization states or distributions that
are “closer” to steady-state than something like “empty and idl€”

There has been some research on how to find such initia states/distributions
“Priming” the modd initialy with entities may be tricky in Smulation software
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9.5.2 Replication/Deletion Approachesfor Means

Assume that an appropriate warmup period has been determined
X; = output measure on jth replication, collected only past warmup point

Proceed with statistical analysis exactly as in terminating case
Make independent replications, each warmed up
Compute mean, variance estimates across replications, confidence intervals

Advantages (compared to methods to be discussed below):
Simple — aside from warmup, the same as for terminating smulations

Get truly 11D observations — important not only for variance estimation and
confidence-interval construction, but also for more sophisticated statistical
goals and techniques to be discussed in Chap. 10-12

Disadvantages:
No completely reliable method to identify an appropriate warmup
Toolong b wasteful of data

Too short b point-estimator bias, which can have serious consequences,
especidly if used in concert with a sequentia procedure:

X (n) isno longer an unbiased estimator of n
Confidence interval is centered in the —wrong” place— at E[ X(n)] ¢ n

Asn -, confidence interval shrinks down around the wrong point, causing
coverageto drop

n =10 ' '
| |
n=20 —r— Work harder,
N=30  e— do worse (in coverage sense)
240

|
I I
E(X(n)]* n (unknown
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9.5.3 Other Approachesfor Means
Make just one “replication,” presumably to amdiorate initia bias
Point estimator of n: average Y (m) of dl thedata Y, Y5, ..., Y in therun

Problem: How to estimate Var(Y (m)), needed to get c.i.’s, etc.?
Know one way not to do this: a Y Y(m) /[r‘r‘(m 1)]

Several methods to estimate Var(Y (m)):
Batch means
Time-series models

Spectra anaysis
Standardized time series

A different one-long-run approach (different point estimator):
Regenerative method

Two aternative modes of operation:

Fixed-sample size procedures — sdlect run length m in advance, precision not
controlled

Sequential procedures — prespecify precision, increase run length m as needed
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Batch M eans

Divide the run (of length m) into n contiguous “batches’ of length k each (m = nk)

Let Vj (k) be the (batch) mean of the jth batch of size k

I

Yi |
I I I
I

|

k—><« k>l k>l k>l k>
— T I I I K
Y1(k) Y2 (K) Y 3(K) Y 4(k) Ys(k) m = nk

Pretend: Y, (k)’sare D, unbiased for n

Vi ax
1 _ =
n m

Qo

Note, -

=Y (m), i.e., mean of batch meansisthe “grand” mean

(v (<) - Y(m))°

n-1

Qos

Form “sample variance’ among the batch means, SZ(n) = =

S; (n)
/n

Approximate 100(1 — a)% confidence interval for n: Y (m) + th-11.a/2
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Appeals of batch means:
Smple (reativey)
Often works fairly well (in terms of coverage)
Automatically implemented in some simulation software

I ssues with batch means (see text for more details and references):
Choose batches big enough so that\?j (k)’s are gpproximately uncorrelated

Otherwise, Sé(n) can be biased (usually low) for Var(\?j (k)), causing
undercoverage

How to choose batch size k? Equivaently, how many batches n?
Evidence: It may never pay to have more than n = 20 or 30 batches

Reason: Due to autocorrelation, splitting run into alarger number of smaller
batches, while increasing degrees of freedom, degrades the quality
(variability) of each individual batch

Generalizations of batch means
Overlapping batch means
Separated batches
Weighting points within the batches

Sequentia batch-means methods to control confidence-interva width
Fix the number n of batches
Increase overdl run length m
Increase batch size k proportionally to increasein m



Time-Series M odels

Assume ardatively smple statistical model for the output process
Discrete-time output process Y1, Yo, ... with steady-state mean n
As with batch means, use overall average Y (m) as point estimator of n

Examples of statistical models for output process:
Autoregressive of order 2 (AR(2)):
Yi=n+fy(Yy—n)+f,(Yo—n)+e, e'slDN(Q,s?
Autoregressive moving average of order (2, 1) (ARMA(2, 1)):
Yi=n+fy(Ya—n)+fy(Yo—n)+ e, +e, e'sIIDNQ,s?

In genera, for ARMA(p, q) mode!:
Use simulation output to identify (estimate) p and g — get p and § (severd

methods exist)
Estimate parameters via regression (least-squares) — (“fit the modd™):
f o pmenf
Ci\lici\z ""1Ci\q
§ 2

Under this modd, Var(Y(m)) =g(f 1, f 2, ..., f p 01, 02, ..., dg, S2) (the
function g is known but messy)

Estimate Var(Y(m)) by g(f ,,f 5,if 5,01.05,0-04,S ?)

Appesals of time-series models.
Physicd intuition
Some theoretical support — most processes can be approximated by an
ARMA(p, q) if we'rewilling to admit large p and g

I ssues with time-series models:
Computation involved for the “fit”
Specifying degrees of freedom for variance estimator
Robustness questions — any better than batch means?
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Spectral Analysis

Assume that output process is covariance-stationary:
Cov(Yi, Yi+j) =C;, i.e, it depends only on j, and not on i
Fairly mild assumption, especially after some warmup

m1
C,+a @- j/mC,
Then Var (Y (m)) = =
m

Edimae Cj, j = 1, 2, ..., m— 1 from output data:
m- |

A v, - vom)
C- — i=1

J

m- |

Plug C ;'sinto formulafor Var(Y(m)) in place of corresponding Cj's

Appedls of spectral anaysis:
Using an exact variance formula
Relationship to other methods (overlapping batch means)

| ssues with spectral analysis:
For large m (as we' d expect), computationally burdensome to get all the C ;'S—
number of operations is about m2/2
Remedy: Computationa device — Fast Fourier Transform
For j near theend (m— 1), éjwill be based on only afew terms, so will itself be

highly varisble—in fact, for j =m—1, C,_, = (v, - Y(m))(¥, - Y(m)), which
is based on only one term in the sum

Remedy: Use different weights — spectral window — in sum for estimate
of Var(Y(m))
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Regener ative M ethod

Different approach to gathering data — do not use Y (m) as point estimator for n

Assume output process is regenerative:
Can identify a sequence of random indices 1 £ B1 < B < ... such that:
Starting from each index Bj, the process from then on follows the same
probability distribution as does the process from any other B;
The process from index Bj on isindependent of the process before B;

This dividesthe processinto IID cycles (or tours):

Yo, Yo sree Y, 1

Yo, Yo i Yo 1

Most familiar example:
Single- or multiple-server queue
Any interarrival, service-time distributions
Yi = Dj = delay in queue of ith arriving customer
Bj = index of the jth customer who arrives to find the whole system empty of
other customers and al serversidle

For single-server case, a customer begins aregeneration cycleif and only if
delay in queue is zero (not true for multiple servers)

D; o




Comparable random variables defined on successive cycles are | 1D

N; = Bj + 1 — Bj = length of jth cycle

Bj.1-
o]

1
Z, = a Y, =sum of the observationsin the jth cycle

|Bj

Can show (renewal reward theory): n = E(Zj)/E(N;)
Make asmulation run of n¢cycles (don’t stop in the middle of acycle)

Forj=1,2, .. n¢letU = (Z,N)"; theseare 11D random vectors

Point estimator for n: N = % which is biased, but strongly consistent



Variance estimation, confidence interval:

61, SipU : :
a | bethecovariance matrix of Uj
%‘ 12 S 220

LetS =

Define Vj = Zj —n N;, which is unobservable, but has mean zero, variance
S\% =Squ- 2’1312 +n2322

Centrd-limit theorem gpplied to V;'s:
Z(n®-n N(ng

JSZ/nt

Need to estimate s

3¥35® N(O, 1) asnt® ¥

n¢

ééll(n(y §12(n(9l;|_ Ja=1[Uj - U(I’I(D][Uj ) U(ng]

Esimate S by a =
Y &9 <, (nod 1

Let sZ(ng =5,,(ng - 23(n9s ,,(n9 +[A(n9]°S ,, (Y, which is strongly
consistent for s 7

Canreplace s inabove CLT by 2 (n¢ (continuous mapping thm.):
Z(n®-nN(nY

JSZ/nt

Manipulate to get asymptotically valid 100(1 — a )% confidence interva for n:

A(ng + Zl-aIZ'VSAVZ (n‘)/n¢
- N(ng

3%2® N(O, 1) asnt® ¥




Appeals of regenerative method:

Firm mathematical foundation—asymptotic validity guarantees proper coverage
probability (1 —a) asnt® ¥

I ssues with regenerative method:
Underlying process must be regenerative — not universadly true

Must identify regeneration points (proof), code their recognition into program,
gather data differently

Asymptotic vaidity depends on having alot of cycles— if cyclestend to be
long (as they often do in complicated models) we may be able to observe
only afew cycles, and asymptotic validity doesn't kick in

There are other ways to get a confidence interval (notably jackknifing; see text)

Sequential-sampling versions have been devel oped—keep smulating more
cycles until the confidence interva is small enough

9-36



Standardized Time Series

Classicd univariate statistics:
TakelID sample X1, X2, ..., Xn
Want to estimate m= E(X;)
“Standardize” univariate data:

X(n) - unknown m
Estimate of standard deviation of X(n)

385® N(0))

Basis for inference (confidence intervals, hypothesis tests, ...)

Observing a process (via smulation):
Observethe process Y1, Y2, ..., Ym

Want to estimate n :li@r)g E(Y;)

“Standardize”’ process data:
Y, - unknownn

Estimate of standard deviation of Y,
(Brownian bridge process is fully understood, like N(O, 1)

34A® Brownian bridge process

Basis for inference (confidence intervals, hypothesistests, ...)
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Specifics:

Observe process Y1, Y2, ..., Ym

Point estimator: Y (m), like batch means, time-series models, spectra analysis

Form n batches of size k each (m = nk), as for batch means

For large m, Y (m) is approximately norma with mean n and variance t 2/m
wheret2 = lim Var (Y (m))

2

] u

12 & é& § (=
dadad (Yj (k) - Yi+(j-1)k)L'l
=1Cs=1 i=1 u

k3 = k j—l
Ask® ¥, Alt2® c2digributionwith n d.f., and isindependent of Y (m)

(Y(m) - n)/\t2/m_¥(@m)-n
At 2 A/ (mn)
n
has an approximate t distribution with n d.f., so an asymptotically valid

confidenceinterval for nisY(m) +t,,, ., ,+/A/(mn)

Let A=

So for large k,

Appesdls of standardized time series.
Firm mathematical foundation—asymptoticaly vaid intervas
Assumptions are much weaker than for regenerative method
Rdatively smple

Issues with standardized time series.
Aswith al asymptotic, methods, how long is long enough?

Aboveiscalled “area’ approach — A represents area under the standardized
Brownian bridge

Other approaches look instead at the maximum attained by the standardized
Brownian bridge



Summary of Steady-State Estimation Procedures

Nothing will work well if computational budget is unduly limited

Batch means, spectral analysis, standardized time series display generaly good
performance (with respect to coverage probability, efficiency of data usage)

Smplicity might argue against spectral andysis

Sequentia-sampling versions exist for most of the main methods, to control
confidence-interva width

Performance measures other than means (variances, proportions, quantiles) have
been investigated

It may be difficult to implement these methods in the context of some existing
simulation software, though some software does alow for, and even builds in
and automates, some of these methods
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9.5.4 Estimating Other M easures of Perfor mance

Means do not always provide the one and only appropriate measure of performance

Probabilities: For some set B, estimate p = P(YT B), where Y is the steady-state
random variable of the process Yy, Yo, ...

e.g., Y = delay of amessage, B = (0, 5 minutes), so p is the probability that a
message is delayed by less than 5 minutes

Thisisa specia case of estimating means, if we define the indicator random
i1 if YT B -
vaisble Z = | " Uthenp=P(Y] B)=P@Z=1)=1PZ=1)+
10 otherwise

0 P(Z=0)=E(2)

Thus, can use all the methods described above for means to estimate a
proportion

Quantiles: The g-quantile y, isthe value such that P(Y £y,) = q

e.0., Y =delay of amessage, Y, s IS the value below which are 75% of the
message delays

See text for details on methods for estimating quantiles based on order statistics,
batch means, and regenerative methods



0.6 Statistical Analysisfor Steady-State
Cycle Parameters

To dichotomize smulations into terminating vs. steady-state is a bit of an
oversmplification:

Manufacturing model, has 8-hour shifts

Simulating in detail what goes on within a shift

Performance might fluctuate widely within a shift

But what matters is the production (say) over the whole shift

Aggregate the data so that a“basic” observation Y; is the production on the ith
shift

Steady-state cycle (e.g., cycle = shift) parameter: steady-state mean of process
defined over acycleasa“unit” of time

Use above steady-state methods, except applied to random variables defined
over acycle, rather than individualy at their finest level of detall
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Example:
Production process, shift = 8 hours, lunch break 4 hours into each shift

N;j = production in hour i; would expect it to drop in 4th hour; plot averaged
over 10 replications:

Sz

No

State

304

s

8 hours

N. = production in shift i; plot averaged over 10 replications:

5
70

Seemsto
have a

steady-
60 - M state; use
earlier

methods

50 L
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9.7 Multiple M easures of Performance

Usualy: Want to observe several performance measures from alarge simulation
Average length of queue(s)
Maximum length of queue(s)
Utilization(s)
Throughput(s)

Difficulty:
Estimate each (expected) performance measure with a confidence interval
Any of the intervals could “miss’ its expected performance measure

Must be careful about overall statements of coverage (i.e, that all intervals
contain their expected performance measures simultaneously)

Sometimes called the problem of multiple comparisons

Have k output performance measures, want overall (familywise) probability of at

least 1 — a that the confidence intervas for them all contain their target expected
performance measures

For s=1, 2, ..., k, suppose the confidence interval for performance measure sisat
confidencelevel 1 —ag

k
Then P(all intervals contain their respective performance measures) 3 1 — é_ a,
s=1

(Bonferroni inequality)

k
Thus, pick a5 s so that é a,=a
s=1
Could pick as=a/kfordl s, or pick ag sdifferently with smaler ag'sfor the more
important performance measures

Obvious problem: For large k and reasonable overall a, theindividua as's could
become tiny, making the corresponding confidence intervals enormous



Alternative Approach

Use multivariate statistical methods to get a joint confidence region (not necessarily
arectangle) that covers expected-performance-measure vector with probability 1

—a

Example:
k = 2 performance measures m; and np
Bonferroni approach: Separate intervals for my and np
Multivariate approach: Ellipse containing (ny, np) with probability l1-a

Bonferroni " box " 100(1- a)%
3100(1- a)% confidence \ confidence elllps

region

100(1- a2)% confidenc
interval fornm

100(1- a1)% confidenc
interval for np

Specific multivariate methods:
Multivariate batch means
Multivariate spectrd anaysis
Multivariate time-series methods

Apped of multivariate methods:
Smaller area (volume) with multivariate methods

| ssues with multivariate methods:
Complexity
Practica interpretation



9.8 Time Plots of Important Variables

So far, have concentrated on performance measures over the course of the whole
smulation run

Averages
Variances
Extrema
Proportions
Quantiles

But these may mask important dynamic (within-run) behavior patterns
Periodicities
Explosions
Learning

Ways to pick up such dynamic behavior
Plot output processes (discrete or continuous)
Animation



