
7-1

CHAPTER 7

Random-Number Generators

7.1 Introduction..2

7.2 Linear Congruential Generators ..6

7.3 Other Kinds of Generators...11

7.3.1 More General Congruences...11

7.3.2 Composite Generators ..12

7.3.3 Tausworthe and Related Generators ..14

7.4 Testing Random-Number Generators ...15

7.4.1 Empirical Tests..16

7.4.2 Theoretical Tests...17

7.4.3 Some General Observations on Testing..20

7-2

7.1 Introduction

The Goal

All stochastic simulations need to “generate” IID U(0,1) “random numbers”

somehow

Density function:


 ≤≤

=
otherwise 0

10 if 1
)(

x
xf

Reason: Observations on all other RVs/processes require U(0,1) input

f(x)

1

x
0 1

7-3

Early Methods

Physical

Cast lots
Dice
Cards
Urns

Shewhart quality-control methods (“normal bowl”)
“Student’s” experiments on distribution of sample correlation coefficient

Lotteries

Mechanical

Spinning disks (Kendall/Babington-Smith, 10,000 digits)

Electrical

ERNIE
RAND Corp. Tables: A Million Random Digits with 100,000 Normal

Deviates

Other schemes

Pick digits “randomly” from Scottish phone directory or census reports

Decimals in expansion of π to 100,000 places

7-4

Algorithmic, Sequential Computer Methods

Sequential: the next “random” number is determined by one or several of its

predecessors according to a fixed mathematical formula
The midsquare method: von Neumann and Metropolis, 1945

Start with Z0 = 4-digit positive integer
Z1 = middle 4 digits of Z0

2 (append 0s if necessary to left of Z0
2 to get exactly 8

digits); U1 = Z1, with decimal point at left
Z2 = middle 4 digits of Z1

2; U2 = Z2, with decimal point at left
Z3 = middle 4 digits of Z2

2; U3 = Z3, with decimal point at left. etc.
i Zi Ui Zi2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
.

.

7182
5811
7677
9363
6657
3156
9603
2176
7349
0078
0060
0036
0012
0001
0000
0000
.

.

—
0.5811
0.7677
0.9363
0.6657
0.3156
0.9603
0.2176
0.7349
0.0078
0.0060
0.0036
0.0012
0.0001
0.0000
0.0000
.

.

51581124
33767721
58936329
87665769
44315649
09960336
92217609
04734976
54007801
00006084
00003600
00001296
00000144
00000001
00000000
00000000
.

.

Other problems with midsquare method:
Not really “random”—entire sequence determined by Z0

If a Zi ever reappears, the entire sequence will be recycled
(This will occur, since the only choices for 4-digit positive integers are 0000,

0001, 0002, ..., 9999)
 “Design” generators so Ui’s “appear” to be IID U(0,1) and cycle length is long

7-5

Can We Generate “Truly” Random Numbers?

“True” randomness:

Only possible with physical experiment having output ~ U(0,1)
Still some interest in this (counting gamma rays from space)
Problems:

Not reproducible
Impractical for computers (wire in special circuits)

Practical view: produce stream of numbers that appear to be IID U(0,1) draws

Use theoretical properties as far as possible
Empirical tests

Criteria for Random-Number Generators

1. “Appear to be distributed uniformly on [0, 1] and independent

2. Fast, low memory

3. Be able to reproduce a particular stream of random numbers. Why?

a. Makes debugging easier

b. Use identical random numbers to simulate alternative system
configurations for sharper comparison

4. Have provision in the generator for a large number of separate (non-
overlapping) streams of random numbers; usually such streams are just
carefully chosen subsequences of the larger overall sequence

Most RNGs are fast, take very little memory

But beware: There are many RNGs in use (and in software) that have extremely

poor statistical properties

7-6

7.2 Linear Congruential Generators

Still the most common type (Lehmer, 1954)

Specify four parameters (all nonnegative integers):

Z0 = seed (or starting value)
m = modulus (or divisor)
a = multiplier
c = increment

Then Z1, Z2, Z3, ... are recursively generated by Zi = (aZi–1 + c) (mod m),

i.e., Zi is the remainder of dividing aZi–1 + c by m.

Thus, 0 ≤ Zi ≤ m – 1 for each i, so let Ui = Zi / m, so 0 ≤ Ui < 1.

Objections to LCGs

Not really “random”—indeed, an explicit formula for each Zi is

()
)(mod

1
1

0 m
a
ac

ZaZ
i

i
i 








−
−

+=

Cycles when previous Zi reappears (only m choices, so cycle length is ≤ m)

Ui’s can only take on the discrete values 0/m, 1/m, 2/m, ..., (m – 1)/m, but

they’re supposed to be continuous (but pick m ≥ 109 or more in practice)

7-7

Example of a “Toy” LCG

m = 16, a = 5, c = 3, Z0 = 7, so formula is Zi = (5Zi-1 + 3) (mod 16)

i Zi Ui

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

7
6
1
8

11
10
5

12
15
14
9
0
3
2

13
4
7
6
1
8

—
0.375
0.063
0.500
0.688
0.625
0.313
0.750
0.938
0.875
0.563
0.000
0.188
0.125
0.813
0.250
0.438
0.375
0.063
0.500

Cycle length (or period) here is 16 = m, the longest possible

Questions:

Can the period be “predicted” in advance?
Can a full period be guaranteed?

7-8

Full-Period Theorem (Hull and Dobell, 1966)

In general, cycle length determined by parameters m, a, and c:

The LCG Zi = (aZi-1 + c) (mod m) has full period (m) if and only all three of the

following hold:

1. c and m are relatively prime (i.e., the only positive integer that divides both c
and m is 1).

2. If q is any prime number that divides m, then q also divides a – 1.
3. If 4 divides m, then 4 also divides a – 1.

Choice of initial seed Z0 does not enter in

Checking these conditions for a “real” generator may be difficult

Condition 1 says that if c = 0, then full period is impossible (since m divides both m

and c = 0)

Theorem is about period only—says nothing about uniformity of a subcycle,

independence, or other statistical properties

Other Desirable Properties Satisfied by LCGs

Fast
Low storage
Reproducible (remember Z0)
Restart in middle (remember last Zi, use as Z0 next time)
Multiple streams (save separated seeds)
Good statistical properties (depends on choice of parameters)

7-9

Implementation/Portability Issues

LCGs (and other generators) generally deal with very large integers (like m)

Usually, choose m ≥ 2.1 billion ≈ 2.1 × 109

Take care in coding, especially in high-level languages (FORTRAN, C)

Use sophisticated abstract-algebra tricks to “break up” the arithmetic on large

integers, then reassemble, to avoid need to store and operate on large integers

Often, use integer overflow to effect modulo m division

Suppose m = 2b, where b = number of data bits in a word (often, b = 31)

Earlier toy example: Zi = (5Zi-1 + 3) (mod 16)

Suppose on a mythical machine with b = 4, so m = 24 = 16

Z6 = 5, so Z7 = (5 × 5 + 3) (mod 16) = (28) (mod 16) = 12

28 = 11100 in binary

4-bit computer can store only rightmost 4 bits, or 1100 = 12

Thus, division modulo 2b is automatic via integer overflow

Problem: often get poor statistical properties using m = 2b

Solution: simulated division:, an algebraic trick to recover most of the

computing efficiency of integer overflow with m ≠ 2b (details in text)

7-10

Some Specific “Good” (With One Exception) LCGs

Mixed (c > 0):

m a c

231 = 2,147,483,648 314,159,269 453,806,245

235 = 34,359,738,368 515 = 30,517,578,125 1

Multiplicative (c = 0, the case for most LCGs):

m a

231 = 2,147,483,648 216 + 3 = 65,539 “RANDU,” a terrible
generator

231 – 1 = 2,147,483,647 75 = 16,807
630,360,016
742,938,285
397,204,094

SIMAN, Arena, AweSim
SIMSCRIPT, simlib
GPSS/H
GPSS/PC

RAND

FORTRAN, and C code in the Appendix 7A

m = 231 – 1 = 2,147,483,647

a = 630,360,016

c = 0 (multiplicative LCG, so period cannot be full; but period = m – 1)

Default seeds for 100 streams spaced 100,000 apart

See comments in code for getting Zi’s, setting seeds

7-11

7.3 Other Kinds of Generators

7.3.1 More General Congruences

LCGs are a special case of the form Zi = g(Zi-1, Zi-2, ...) (mod m), Ui = Zi/m, for

some function g

Examples:

g(Zi-1) = aZi-1 + c LCG

g(Zi-1, Zi-2, ..., Zi-q) = a1Zi-1 + a2Zi-2 + ... + aqZi-q multiple recursive generator

g(Zi-1) = a'Zi-1
2 + aZi-1 + c quadratic CG

g(Zi-1, Zi-2) = Zi-1 + Zi-2 Fibonacci (bad)

7-12

7.3.2 Composite Generators

Combine two (or more) individual generators in some way

Shuffling

Fill a vector of length 128 (say) from generator 1
Use generator 2 to pick one of the 128 in the vector
Fill the hole with the next value from generator 1, use generator 2 to pick one of

the 128 in the vector, etc.
Evidence: shuffling a bad generator improves it, but shuffling a good generator

doesn’t gain much.

Differencing LCGs

Z1i and Z2i from LCGs with different moduli
Let Zi = (Z1i – Z2i) (mod m); Ui = Zi / m
Very long period (like 1018); very good statistical properties
Very portable (micros, different languages)

Wichmann/Hill

Use three LCGs to get U1i, U2i, and U3i sequences
Let Ui = fractional part of U1i + U2i + U3i
Long period, good statistics, portability
But later shown to be equivalent to a LCG (!!!)

7-13

Combined Multiple Recursive Generators

Recall the single MRG: Zi = (a1Zi-1 + a2Zi-2 + ... + aqZi-q) (mod m), Ui = Zi/m

Have J MRGs running simultaneously: {Z1,i}, {Z2,i}, ..., {ZJ,i}

Let m1 be the modulus used in the first of these J MRGs

For constants δ1, δ2, ..., δJ, define

Yi = (δ1Z1,i + δ2Z2,i + ... + δJZJ,i) (mod m1)

Return Ui = Yi / m

Must choose constants carefully, but extremely long periods and extremely

good statistical behavior can be achieved

Specific example in text for J = 2, q = 3 for both MRGs, δ1 = 1, δ2 = –1, with
small, fast, portable C code in Appendix 7B, with 10,000 streams spaced
1016 apart

Period is approximately 3.1 × 1057

Excellent statistical properties through 32 dimensions (see Sec. 7.4.2)

7-14

7.3.3 Tausworthe and Related Generators

Tausworthe Generators

Originated in cryptography
Generate sequence of bits b1, b2, b3, ... via congruence

bi = (bi-r + bi-q) (mod 2) =




≠
=

−−

−−

qiri

qiri

bb
bb

 if 1
 if 0

Various algorithms to group bits into Ui’s
Can achieve very long periods
Theoretical appeal: for properly chosen parameters, can prove that over a cycle,

mean ≈ 1/2 (as for true U(0,1))

variance ≈ 1/12 (as for true U(0,1))

autocorrelation ≈ 0 (as for true IID sequence)
n-tuples ~ U(0,1)n (a problem with LCGs)

“Unpredictable” Generators (Blum/Blum/Shub)

Another way to generate a sequence of bits
Pick p and q to be large (like 40-digit) prime numbers, set m = pq
Generate Xi = Xi-1

2 (mod m)
Let bi = parity of Xi (0 if even, 1 if odd), also equal to rightmost bit of Xi
Result: Discovering nonrandomness in bit sequence is computationally equivalent

to factoring m into the product of p times q (which is widely believed to be
essentially impossible in any reasonable time period)

Thus, the sequence is really “random” in any practical sense
New York Times (Tuesday April 19, 1988, Section C): “The Quest for True

Randomness Finally Appears Successful”

7-15

7.4 Testing Random-Number Generators

Since RNGs are completely deterministic, we need to test them to see if they appear

to be random and IID uniform on [0, 1]

General advice: be wary of “canned” RNGs in software that is not specifically

simulation software, especially if they are not thoroughly documented; perhaps
even test them before using

Two types of tests: Empirical and Theoretical

7-16

7.4.1 Empirical Tests

Use trial generator to generate some U’s, apply statistical tests

Give information only on that part of a generator’s cycle examined (local) — is this

good or bad?

Some examples:

Chi-square, K-S tests for U(0,1) (all parameters known)

Serial test—generalize chi-square test to higher

dimensions
Two dimensions—subdivide unit square into subcells

Test statistic = ∑ −

cellsall Expected
ExpectedObserved 2)(

Provides indirect test of independence

Runs tests—direct test of independence

“Run up of length i” occurs if exactly i U’s in a row go up
Under H0: independence, know P(Run up of length i), any i
Observe frequency of runs up, compare with probabilities
Get a chi-squared test statistic

Direct test for correlation—see text for details

1

0 0 1 Ui

Ui+1

7-17

7.4.2 Theoretical Tests

Don’t generate any U’s, but use analytical properties of generator

Not statistical “tests” at all

Apply to full period of a generator (global—relevance??)

Full-Period Values

LCGs, Tausworthe generators

Prove “sample” mean of U’s over a full period is 1/2 – 1/(2m)

Prove “sample” variance of U’s over a full period is 1/12 – 1/(12m2)

Lattice Structure of LCGs (and Other Kinds of Generators)

“Random Numbers Lie Mainly in the Planes” (G. Marsaglia, 1968)

Think of generating all pairs (Ui, Ui+1), i over a full period

Think of generating all triples (Ui, Ui+1, Ui+2), i over a full period, etc.

The generated d-tuples all lie on parallel d – 1 dimensional hyperplanes cutting

through the d-dimensional unit cube

Spectral and lattice tests—measure spacing of hyperplanes (smaller is better)

7-18

Two-dimensional

m = 64, a = 37, c = 1:

m = 64, a = 21, c = 1 (only change from above: a = 21 rather than 37):

7-19

Three-dimensional

m = 64, a = 37, c = 1:

m = 231 = 2,147,483,648, a = 216 + 3 = 65,539, c = 0 (RANDU):

7-20

7.4.3 Some General Observations on Testing

Beware of “canned” generators—especially in non-simulation software, and

especially if poorly documented

Insist on documentation of the generator—check with “tried and true” ones

Don’t “seed” the generator with the square root of the clock or any other such

scatterbrained scheme—we want to get reproducibility of the random-number
stream

Reasonably safe idea:

Use one of the generators from Appendix 7A (if period of 109 is long enough ...
which may or may not be true) or 7B (if longer period is needed)

Highly portable

Provide default streams with controlled, known spacing

Take care to avoid overlapping the streams

