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7.1  Introduction 
 
The Goal 
 
All stochastic simulations need to “generate” IID U(0,1) “random numbers” 

somehow 
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Reason:  Observations on all other RVs/processes require U(0,1) input 
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Early Methods 
 
Physical 
 

Cast lots 
Dice 
Cards 
Urns 

Shewhart quality-control methods (“normal bowl”) 
“Student’s” experiments on distribution of sample correlation coefficient 

Lotteries 
 
Mechanical 
 

Spinning disks (Kendall/Babington-Smith, 10,000 digits) 
 
Electrical 
 

ERNIE 
RAND Corp. Tables:  A Million Random Digits with 100,000 Normal 

Deviates 
 
Other schemes 
 

Pick digits “randomly” from Scottish phone directory or census reports 

Decimals in expansion of π to 100,000 places 
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Algorithmic, Sequential Computer Methods 
 
Sequential:  the next “random” number is determined by one or several of its 

predecessors according to a fixed mathematical formula 
The midsquare method:  von Neumann and Metropolis, 1945 

Start with Z0 = 4-digit positive integer 
Z1 = middle 4 digits of Z0

2 (append 0s if necessary to left of Z0
2 to get exactly 8 

digits); U1 = Z1, with decimal point at left 
Z2 = middle 4 digits of Z1

2; U2 = Z2, with decimal point at left 
Z3 = middle 4 digits of Z2

2; U3 = Z3, with decimal point at left. etc. 
i Zi Ui Zi2 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
. 

. 

7182 
5811 
7677 
9363 
6657 
3156 
9603 
2176 
7349 
0078 
0060 
0036 
0012 
0001 
0000 
0000 
. 

. 

— 
0.5811 
0.7677 
0.9363 
0.6657 
0.3156 
0.9603 
0.2176 
0.7349 
0.0078 
0.0060 
0.0036 
0.0012 
0.0001 
0.0000 
0.0000 
. 

. 

51581124 
33767721 
58936329 
87665769 
44315649 
09960336 
92217609 
04734976 
54007801 
00006084 
00003600 
00001296 
00000144 
00000001 
00000000 
00000000 
. 

. 

Other problems with midsquare method: 
Not really “random”—entire sequence determined by Z0 

If a Zi ever reappears, the entire sequence will be recycled 
(This will occur, since the only choices for 4-digit positive integers are 0000, 

0001, 0002, ..., 9999) 
 “Design” generators so Ui’s “appear” to be IID U(0,1) and cycle length is long 
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Can We Generate “Truly” Random Numbers? 
 
“True” randomness: 

Only possible with physical experiment having output ~ U(0,1) 
Still some interest in this (counting gamma rays from space) 
Problems: 

Not reproducible 
Impractical for computers (wire in special circuits) 

 
Practical view:  produce stream of numbers that appear to be IID U(0,1) draws 

Use theoretical properties as far as possible 
Empirical tests 

 
 
Criteria for Random-Number Generators 
 

1. “Appear to be distributed uniformly on [0, 1] and independent 

2. Fast, low memory 

3. Be able to reproduce a particular stream of random numbers.  Why? 

a. Makes debugging easier 

b. Use identical random numbers to simulate alternative system 
configurations for sharper comparison 

4. Have provision in the generator for a large number of separate (non-
overlapping) streams of random numbers; usually such streams are just 
carefully chosen subsequences of the larger overall sequence 

 
Most RNGs are fast, take very little memory 
 
But beware:  There are many RNGs in use (and in software) that have extremely 

poor statistical properties 
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7.2  Linear Congruential Generators 
 
Still the most common type (Lehmer, 1954) 
 
Specify four parameters (all nonnegative integers): 

Z0 = seed (or starting value) 
m = modulus (or divisor) 
a = multiplier 
c = increment 

 
Then Z1, Z2, Z3, ... are recursively generated by Zi = (aZi–1 + c) (mod m), 

i.e., Zi is the remainder of dividing  aZi–1 + c by m. 
 
Thus, 0 ≤ Zi ≤ m – 1 for each i, so let Ui = Zi / m, so 0 ≤ Ui < 1. 
 
Objections to LCGs 
 

Not really “random”—indeed, an explicit formula for each Zi is 
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Cycles when previous Zi reappears (only m choices, so cycle length is ≤ m) 
 
Ui’s can only take on the discrete values 0/m, 1/m, 2/m, ..., (m – 1)/m, but 

they’re supposed to be continuous (but pick m ≥ 109 or more in practice) 
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Example of a “Toy” LCG 
 
m = 16, a = 5, c = 3, Z0 = 7, so formula is Zi = (5Zi-1 + 3) (mod 16) 
 

i Zi Ui 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

7 
6 
1 
8 

11 
10 
5 

12 
15 
14 
9 
0 
3 
2 

13 
4 
7 
6 
1 
8 

— 
0.375 
0.063 
0.500 
0.688 
0.625 
0.313 
0.750 
0.938 
0.875 
0.563 
0.000 
0.188 
0.125 
0.813 
0.250 
0.438 
0.375 
0.063 
0.500 

 
Cycle length (or period) here is 16 = m, the longest possible 
 
Questions: 

Can the period be “predicted” in advance? 
Can a full period be guaranteed? 
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Full-Period Theorem (Hull and Dobell, 1966) 
 
In general, cycle length determined by parameters m, a, and c: 
 
The LCG Zi = (aZi-1 + c) (mod m) has full period (m) if and only all three of the 

following hold: 
 

1. c and m are relatively prime (i.e., the only positive integer that divides both c 
and m is 1). 

2. If q is any prime number that divides m, then q also divides a – 1. 
3. If 4 divides m, then 4 also divides a – 1. 

 
Choice of initial seed Z0 does not enter in 
 
Checking these conditions for a “real” generator may be difficult 
 
Condition 1 says that if c = 0, then full period is impossible (since m divides both m 

and c = 0) 
 
Theorem is about period only—says nothing about uniformity of a subcycle, 

independence, or other statistical properties 
 
 
Other Desirable Properties Satisfied by LCGs 
 
Fast 
Low storage 
Reproducible (remember Z0) 
Restart in middle (remember last Zi, use as Z0 next time) 
Multiple streams (save separated seeds) 
Good statistical properties (depends on choice of parameters) 
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Implementation/Portability Issues 
 
LCGs (and other generators) generally deal with very large integers (like m) 
 
Usually, choose m ≥ 2.1 billion ≈ 2.1 × 109 
 
Take care in coding, especially in high-level languages (FORTRAN, C) 
 
Use sophisticated abstract-algebra tricks to “break up” the arithmetic on large 

integers, then reassemble, to avoid need to store and operate on large integers 
 
Often, use integer overflow to effect modulo m division 
 

Suppose m = 2b, where b = number of data bits in a word (often, b = 31) 
 
Earlier toy example:  Zi = (5Zi-1 + 3) (mod 16) 
 

Suppose on a mythical machine with b = 4, so m = 24 = 16 
 

Z6 = 5, so Z7 = (5 × 5 + 3) (mod 16) = (28) (mod 16) = 12 
 
28 = 11100 in binary 
 
4-bit computer can store only rightmost 4 bits, or 1100 = 12 
 

Thus, division modulo 2b is automatic via integer overflow 
 

Problem:  often get poor statistical properties using m = 2b 
 
Solution:  simulated division:, an algebraic trick to recover most of the 

computing efficiency of integer overflow with m ≠ 2b (details in text) 



7-10 

Some Specific “Good” (With One Exception) LCGs 
 
Mixed (c > 0): 
 

m a c 

231    =   2,147,483,648 314,159,269 453,806,245 

235    = 34,359,738,368 515 = 30,517,578,125 1 

 
Multiplicative (c = 0, the case for most LCGs): 
 

m a  

231      = 2,147,483,648 216 + 3 = 65,539 “RANDU,” a terrible 
generator 

231 – 1 = 2,147,483,647 75 = 16,807 
630,360,016 
742,938,285 
397,204,094 

SIMAN, Arena, AweSim 
SIMSCRIPT, simlib 
GPSS/H 
GPSS/PC 

 
 

RAND 
 
FORTRAN, and C code in the Appendix 7A 
 
m = 231 – 1 = 2,147,483,647 
 
a = 630,360,016 
 
c = 0 (multiplicative LCG, so period cannot be full; but period = m – 1) 
 
Default seeds for 100 streams spaced 100,000 apart 
 
See comments in code for getting Zi’s, setting seeds 
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7.3  Other Kinds of Generators 
 
 

7.3.1  More General Congruences 
 
LCGs are a special case of the form Zi = g(Zi-1, Zi-2, ...) (mod m), Ui = Zi/m, for 

some function g 
 
Examples: 

g(Zi-1) = aZi-1 + c LCG 

g(Zi-1, Zi-2, ..., Zi-q) = a1Zi-1 + a2Zi-2 + ... + aqZi-q multiple recursive generator 

g(Zi-1) = a'Zi-1
2 + aZi-1 + c quadratic CG 

g(Zi-1, Zi-2) = Zi-1 + Zi-2 Fibonacci (bad) 
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7.3.2  Composite Generators 
 
 
Combine two (or more) individual generators in some way 
 
 
Shuffling 
 

Fill a vector of length 128 (say) from generator 1 
Use generator 2 to pick one of the 128 in the vector 
Fill the hole with the next value from generator 1, use generator 2 to pick one of 

the 128 in the vector, etc. 
Evidence:  shuffling a bad generator improves it, but shuffling a good generator 

doesn’t gain much. 
 
 
Differencing LCGs 
 

Z1i and Z2i from LCGs with different moduli 
Let Zi = (Z1i – Z2i ) (mod m); Ui = Zi / m 
Very long period (like 1018); very good statistical properties 
Very portable (micros, different languages) 

 
 
Wichmann/Hill 
 

Use three LCGs to get U1i, U2i, and U3i sequences 
Let Ui = fractional part of U1i + U2i + U3i 
Long period, good statistics, portability 
But ......... later shown to be equivalent to a LCG (!!!) 
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Combined Multiple Recursive Generators 
 
 

Recall the single MRG:  Zi = (a1Zi-1 + a2Zi-2 + ... + aqZi-q) (mod m), Ui = Zi/m 
 
Have J MRGs running simultaneously:  {Z1,i}, {Z2,i}, ..., {ZJ,i} 
 
Let m1 be the modulus used in the first of these J MRGs 
 

For constants δ1, δ2, ..., δJ, define 

Yi = (δ1Z1,i + δ2Z2,i + ... + δJZJ,i) (mod m1) 
 
Return Ui = Yi / m 
 
Must choose constants carefully, but extremely long periods and extremely 

good statistical behavior can be achieved 
 

Specific example in text for J = 2, q = 3 for both MRGs, δ1 = 1, δ2 = –1, with 
small, fast, portable C code in Appendix 7B, with 10,000 streams spaced 
1016 apart 

 

Period is approximately 3.1 × 1057 
 
Excellent statistical properties through 32 dimensions (see Sec. 7.4.2) 
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7.3.3  Tausworthe and Related Generators 
 
 
Tausworthe Generators 
 
Originated in cryptography 
Generate sequence of bits b1, b2, b3, ... via congruence 

bi = (bi-r + bi-q) (mod 2) = 




≠
=

−−

−−

qiri

qiri

bb
bb

 if 1
 if 0

 
Various algorithms to group bits into Ui’s 
Can achieve very long periods 
Theoretical appeal:  for properly chosen parameters, can prove that over a cycle, 

mean  ≈ 1/2  (as for true U(0,1)) 

variance  ≈ 1/12  (as for true U(0,1)) 

autocorrelation  ≈ 0  (as for true IID sequence) 
n-tuples ~ U(0,1)n  (a problem with LCGs) 

 
 
“Unpredictable” Generators (Blum/Blum/Shub) 
 
Another way to generate a sequence of bits 
Pick p and q to be large (like 40-digit) prime numbers, set m = pq 
Generate Xi = Xi-1

2 (mod m)  
Let bi = parity of Xi (0 if even, 1 if odd), also equal to rightmost bit of Xi 
Result:  Discovering nonrandomness in bit sequence is computationally equivalent 

to factoring m into the product of p times q (which is widely believed to be 
essentially impossible in any reasonable time period) 

Thus, the sequence is really “random” in any practical sense 
New York Times (Tuesday April 19, 1988, Section C):  “The Quest for True 

Randomness Finally Appears Successful” 
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7.4  Testing Random-Number Generators 
 
 
Since RNGs are completely deterministic, we need to test them to see if they appear 

to be random and IID uniform on [0, 1] 
 
General advice:  be wary of “canned” RNGs in software that is not specifically 

simulation software, especially if they are not thoroughly documented; perhaps 
even test them before using 

 
Two types of tests:  Empirical and Theoretical 
 



7-16 

7.4.1  Empirical Tests 
 
 
Use trial generator to generate some U’s, apply statistical tests 
 
Give information only on that part of a generator’s cycle examined (local) — is this 

good or bad? 
 
 
Some examples: 
 
 

Chi-square, K-S tests for U(0,1)  (all parameters known) 
 
 
Serial test—generalize chi-square test to higher 

dimensions 
Two dimensions—subdivide unit square into subcells 
 

Test statistic = ∑ −

cellsall Expected
ExpectedObserved 2)(

 

Provides indirect test of independence 
 
 
Runs tests—direct test of independence 

“Run up of length i” occurs if exactly i U’s in a row go up 
Under H0: independence, know P(Run up of length i), any i 
Observe frequency of runs up, compare with probabilities 
Get a chi-squared test statistic  
 

Direct test for correlation—see text for details 

1 

0 0 1 Ui 

Ui+1 
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7.4.2  Theoretical Tests 
 
 
Don’t generate any U’s, but use analytical properties of generator 
 
Not statistical “tests” at all 
 
Apply to full period of a generator (global—relevance??) 
 
 
Full-Period Values 
 
LCGs, Tausworthe generators 
 
Prove “sample” mean of U’s over a full period is 1/2 – 1/(2m) 
 
Prove “sample” variance of U’s over a full period is 1/12 – 1/(12m2) 
 
 
Lattice Structure of LCGs (and Other Kinds of Generators) 
 
“Random Numbers Lie Mainly in the Planes” (G. Marsaglia, 1968) 
 
Think of generating all pairs (Ui, Ui+1), i over a full period 
 
Think of generating all triples (Ui, Ui+1, Ui+2), i over a full period, etc. 
 
The generated d-tuples all lie on parallel d – 1 dimensional hyperplanes cutting 

through the d-dimensional unit cube 
 
Spectral and lattice tests—measure spacing of hyperplanes (smaller is better) 
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Two-dimensional 
 
m = 64, a = 37, c = 1: 

 
 
m = 64, a = 21, c = 1 (only change from above:  a = 21 rather than 37): 
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Three-dimensional 
 
m = 64, a = 37, c = 1: 

 
 
m = 231 = 2,147,483,648, a = 216 + 3 = 65,539, c = 0 (RANDU): 
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7.4.3  Some General Observations on Testing 
 
 
Beware of “canned” generators—especially in non-simulation software, and 

especially if poorly documented 
 
Insist on documentation of the generator—check with “tried and true” ones 
 
Don’t “seed” the generator with the square root of the clock or any other such 

scatterbrained scheme—we want to get reproducibility of the random-number 
stream 

 
Reasonably safe idea: 
 

Use one of the generators from Appendix 7A (if period of 109 is long enough ... 
which may or may not be true) or 7B (if longer period is needed) 

 
Highly portable 
 
Provide default streams with controlled, known spacing 
 
Take care to avoid overlapping the streams 

 


