
Simulation Modeling for System Design and Analysis: Fundamental Principles - Chapter 4

1

1

4. Review of Basic Probability and 
Statistics

Outline:
4.1.  Random Variables and Their     

Properties
4.2. Simulation Output Data and  

Stochastic Processes
4.3. Estimation of Means and 

Variances
4.4. Confidence Interval for the Mean
 Copyright 1998-2006 by Averill M. Law.  All rights reserved. 2

4.1. Random Variables and Their 
Properties

A random variable X is said to be 
discrete if it can take on at most a 
countable number of values, say, 
x1, x2, ... .  The probability that X is 
equal to xi is given by

and
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where p(x) is the probability mass 
function. The distribution function F(x) 
is

for all -∞∞∞∞ < x < ∞∞∞∞.
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Example 4.1: Consider the demand-size 

random variable of Section 1.5 of Law 

(2006) that takes on the values 1, 2, 3, 4, 

with probabilities 1/6, 1/3, 1/3, 1/6.  The 

probability mass function and the 

distribution function are given in    

Figures 4.1 and 4.2.
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Figure 4.1. p(x) for the demand-size random variable.
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Figure 4.2. F(x) for the demand-size random variable.
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A random variable X is said to be 
continuous if there exists a nonnegative 
function f(x), the probability density 
function, such that for any set of real 
numbers B,

(where �∈∈∈∈ � means �contained in�).
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If x is a number and ∆x > 0, then

which is the left shaded area in Figure 
4.3.
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Figure 4.3. Interpretation of the probability density function f(x).

10

The distribution function F(x) for a 
continuous random variable X is
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Example 4.2: The probability density 
function and distribution function for 
an exponential random variable with 
mean β are defined as follows (see 
Figures 4.4 and 4.5):

and

1( ) for 0x /f x   e   x−−−−= ≥= ≥= ≥= ≥ββββ

ββββ

( ) 1 for 0x /F x e   x−−−−= − ≥= − ≥= − ≥= − ≥ββββ

12

x
0

1
ββββ

Figure 4.4. f(x) for an exponential random variable with mean β..
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Figure 4.5. F(x) for an exponential random variable with mean β.
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The random variables X and Y are 
independent if knowing the value that  
one takes on tells us nothing about the 
distribution of the other.
The mean or expected value of the 
random variable X, denoted by µ or    
E(X), is given by

1
( ) if is discrete

( ) if is continuous
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The mean is one measure of the 
central tendency of a random variable.
Problem 4.1: What are other 
measures?
Properties:
1. E(cX) = cE(X), where c is a constant
2. E(X + Y) = E(X) + E(Y) regardless of

whether X and Y are independent

16

The variance of the random variable X, 
denoted by σ2 or Var(X), is given by

σ2 = E[(X - µ)2] = E(X2) - µ2

The variance is a measure of the 
dispersion of a random variable about 
its mean (see Figure 4.6).
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Figure 4.6. Density functions for continuous random variables with large 
and small variances.
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Properties:

1. Var(cX) = c2Var(X)

2. Var(X + Y) = Var(X) + Var(Y)                  
if X, Y are independent

19

The square root of the variance is 

called the standard deviation and is 

denoted by σ.  It can be given the most 

definitive interpretation when X has a 

normal distribution (see Figure 4.7).
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Figure 4.7. Density function for a N(µµµµ, σσσσ2) distribution.
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The covariance between the random 
variables X and Y, denoted by   
Cov(X, Y), is defined by

Cov(X, Y) = E{[X - E(X)][Y - E(Y)]}

= E(XY) - E(X)E(Y)

The covariance is a measure of the 
dependence between X and Y.  Note 
that Cov(X, X) = Var(X).

22

Definitions:

Cov(X, Y) X and Y are

= 0 uncorrelated
> 0 positively correlated
< 0 negatively correlated

Independent random variables are also 
uncorrelated.
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Note that, in general, we have

If X and Y are independent, then
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The correlation between the random 
variables X and Y, which is a measure 
of linear dependence (see next slide), 
is denoted by Cor(X, Y) and defined by

It can be shown that

Cov( )Cor( )
Var( )Var( )
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Suppose that                  , where a and b

are constants.  Then 
Y aX b= += += += +

  1  if  0
Cor( , )

1  if  0
a

X Y
a

>>>>����==== ����− <− <− <− <����

26

4.2. Simulation Output Data and 
Stochastic Processes

A stochastic process is a collection of 

"similar" random variables ordered 

over time all defined relative to the 

same experiment.  If the collection is 

X1, X2, ... , then we have a discrete-time

stochastic process.  

27

If the collection is {X(t), t ≥≥≥≥ 0}, then we 
have a continuous-time stochastic 

process.

28

Example 4.3:
For the single-server queueing system 
of Chapter 1, assume the following: 

� The Ai�s are independent and    

identically distributed (IID)

�  The Pi�s are IID

�  The Ai�s and Pi�s are independent
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Relative to the experiment of generating 

the Ai's and Pi's, one can define the 

discrete-time stochastic process of 

delays in queue D1, D2, ... as follows:

D 1 = 0

Di +1 = max{Di + Pi - Ai +1, 0} for i = 1, 2, ...

30

Thus, the simulation maps the input 

random variables into the output 

process of interest.

Problem 4.2: Are Di and Di+1 independent, 

positively correlated, or negatively 

correlated?

31

Other examples of stochastic processes:

� N1, N2, ... , where Ni = number of parts     

produced in the ith hour for a 

manufacturing system

� T1, T2, ... , where Ti = time in system of   

the ith part for a manufacturing system

� {Q(t), t ≥≥≥≥ 0}, where Q(t) = number of     

customers in queue at time t

32

� C1, C2, ... , where Ci = total cost in the     
ith month for an inventory system

� E1, E2, ... , where Ei = end-to-end delay     
of ith message to reach its destination   
in a communications network
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Example 4.4: Consider the delay-in-
queue process D1, D2, ... for the 
M/M/1 queue with utilization factor ρ.  
Then the correlation function ρj

between Di and Di+j is given in Figure 
4.8.
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Figure 4.8. Correlation function ρj of the process D1, D2, ... 
for the M/M/1 queue.
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4.3. Estimation of Means and Variances
Let X1, X2, ..., Xn be IID random 

variables with population mean and 

variance µ and σ2, respectively.

36

Population Sample estimate
parameter
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Note that         is an unbiased estimator of µ, i.e., ( )X n

(1)

(3)

(5)

Sample mean

Sample variance
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Problem 4.3: Show that         is an 

unbiased estimator of    .

The difficulty with using         as an 

estimator of    without any additional 

information is that we have no way of 

assessing how close         is to   .

( )X n

µµµµ

( )X n

µµµµ

( )X n µµµµ
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Because         is a random variable with 

variance                 , on one experiment it may 

be close to    while on another it may differ 

from    by a large amount (see Figure 4.9). 

The usual  way to access the precision of 

as an estimator of    is to construct a 

confidence interval for   , which we discuss in 

the next section.

( )X n

Var[ ( )]X n
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µµµµ

( )X n µµµµ
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Figure 4.9. Two observations of the random variable         .( )X n

Sampling distribution of ( )X n

First observation of ( )X n Second observation of ( )X n
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Example 4.5: Consider the bank with 5 
tellers on p. 486-487 of Law.  The 
following are the average delays in 
queue resulting from 10 independent 
replications of the simulation model: 

1.53, 1.66, 1.24, �, 2.60

Since these observations are IID, they 
can be plugged into (1) through (5).



Simulation Modeling for System Design and Analysis: Fundamental Principles - Chapter 4

11

41

However, the delays in queue from one

particular replication are not 

independent.

42

4.4. Confidence Interval for the Mean

Let X1, X2, ..., Xn be IID random 

variables with mean µ.  Then an 

(approximate) 100(1 - α) percent 

(0 < α < 1) confidence interval for µ is
2

1,1 2( ) ( )/ (6)n -  - /X n    n n    t      S±±±± αααα

43

where tn - 1, 1 - α/2 is the upper 1 - α/2 

critical point for a t distribution with     

n - 1 df (see Figure 4.10).
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Figure 4.10. Standard normal distribution and t distribution with n - 1 df.
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Notes:

� tn-1, 1-αααα/2 > z1-αααα/2  for n ≥≥≥≥ 2.
�  tn-1, 1-αααα/2 decreases to z1-αααα/2 as n gets   

larger.

�  tn-1, 1-αααα/2 ≈≈≈≈ z1-αααα/2  for n = 50
�  As α gets smaller, the confidence 

interval half-length gets larger.
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Interpretation of a confidence interval:

If one constructs a very large number   
of independent 100(1 - α) percent 
confidence intervals for     each based 
on n observations, where n is 
sufficiently large, then the proportion of 
these confidence intervals that contain µ
should be 1 - α (regardless of the 
distribution of X).

µµµµ
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Alternatively, if X is N(µµµµ,σσσσ2), then the 
coverage probability will be 1- αααα
regardless of the value of n.  If X is not 
N(µµµµ,σσσσ2), then there will be a degradation 
in coverage for �small� n.  The greater 
the skewness of the distribution of X,  
the greater the degradation (see pp.   
256-257).
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We used tn-1, 1-αααα/2 rather than z1-αααα/2 in 

(6) to help lessen the effect of 

skewness in the distribution of X

and of �small� n.
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Important characteristics of a 
confidence interval:

�  Confidence level (e.g., 90 percent)

�  Half-length (see also p. 511)

Problem 4.4: If we want to decrease the 
half-length by a factor of approximately 
2 and n is �large� (e.g., 50), then to what 
value does n need to be increased?

50

Recommended reading
Chapter 4 in Law (2006)


