Chapter 3
Simulation Software

3.1 INTRODUCTION

- Activities common to most simulations:
 - Random-number generation … draws from $U(0, 1)$ distribution
 - Random-variate generation … draws from probability distributions specified as part of the inputs to the model
 - Advancing simulated time
 - Determining the next event from the event list, and passing control to the appropriate event logic
 - Adding records to lists, deleting records from lists
 - Collecting output statistics and reporting results
 - Detecting error conditions
- Simulation software packages are designed to do these things (and more) for you

3.2 COMPARISON OF SIMULATION PACKAGES WITH PROGRAMMING LANGUAGES

- Advantages of simulation packages
 - Provide most modeling features, so “programming” effort, cost is reduced, often significantly
 - Natural framework for simulation modeling
 - Usually make it easier to modify models
 - Better error detection for simulation-specific errors
- Advantages of general-purpose programming languages
 - More widely known, available
 - Usually executes faster … if well written
 - May allow more modeling flexibility
 - Software cost is usually lower
3.3 CLASSIFICATION OF SIMULATION SOFTWARE

• General-purpose vs. application-oriented packages
 – Traditionally: simulation languages and simulators
 • Languages were flexible but required programming, simulators were easy to use but not very flexible
 – Now, almost all simulation software uses graphical interface so is relatively easy to use, learn
 – Distinction now is between general-purpose simulation software and applications-oriented package
 • Specific applications include manufacturing, call centers, telecommunications, etc.

3.3 Classification of Simulation Software (cont’d.)

• Modeling approaches
 – Event-scheduling approach – as in Chaps. 1 and 2
 • Can uses general programming languages, or some simulation languages
 • During processing of an event, no simulated time passes
 – Process-interaction approach
 • Now used by most simulation software
 • Instead of identifying events, identify entities (a.k.a. processes) that are created, flow around or through the system, maybe leave
 • May have multiple realizations of an entity/process
 • May have different kinds of entities/processes
 • “Program” consists of a description of what happens to the different kinds of processes (including their entry and exit)
 • Usually expressed graphically, like a flowchart
 • During processing of an entity/process, simulated time usually passes

3.3 Classification of Simulation Software (cont’d.)

• Common modeling elements
 – Entities – represent customers, parts, messages, paperwork, airplane, etc.
 – Attributes – Information stored with each entity
 • Usually, every individual entity has the same set of attributes, but the values differ to distinguish the entities
 • Some attributes are automatic, others are user-defined and user-maintained
 – Resources – servers, machines, workers, nodes, links, runways, gates, agents, clerks, etc.
 – Queues – where entities wait if resources are not available

3.4 DESIRABLE SOFTWARE FEATURES

• General capabilities
 – Modeling flexibility – ability to drill down to lower levels of programming, create custom modeling constructs
 – Ease of use
 – Hierarchical modeling – submodels containing submodels, etc.
 – Fast execution speed
 – Ability to create user-friendly front/back ends for template creation
 – Run-time version for wide distribution of model
 – Import/export data from/to other applications
 – Automatic execution of models for different input-parameter combinations
 – Combined discrete/continuous modeling
 – Ability to initialize in other than empty & idle state
 – Save state at end to re-start later
 – Affordable
3.4 Desirable Software Features (cont’d.)

- **Hardware and software requirements**
 - Matches platform/OS – Windows, UNIX, MacOS

- **Animation and dynamic graphics**
 - Concurrent vs. postprocessing
 - 2D vs. 3D
 - Import CAD drawings
 - Display statistics, graphs dynamically during execution

3.4 Desirable Software Features (cont’d.)

- **Statistical capabilities**
 - Adequate random-number generator for basic U(0, 1) variates
 - Statistical properties, cycle length, adequate streams and substreams
 - RNG seeds should have good defaults, be fixed – not dependent on clock
 - Comprehensive list of input probability distributions
 - Continuous, discrete, empirical
 - Ability to make independent replications
 - Confidence-interval formation for output performance measures
 - Warmup
 - Experimental design
 - Optimum-seeking

- **Customer support and documentation**

- **Output reports and graphics**
 - Standard defaults, customizable – stored in database for postprocessing

3.5 GENERAL-PURPOSE SIMULATION PACKAGES

- See text for discussion of two popular general-purpose simulation packages – Arena and Extend
 - In each, builds a model of a small manufacturing system

- Mentions some additional general-purpose simulation packages
 - AweSim, Micro Saint, GPSS/SLX, SIMPLE++, SIMUL8, Taylor Enterprise Dynamics

3.6 OBJECT-ORIENTED SIMULATION

- **OO programming and OO simulation originated in the same product – SIMULA, from the 1960s**
- **OO simulation has objects that interact as simulation progresses through simulated time**
- **Objects contain data, methods**
- **Also have encapsulation, inheritance, etc.**
- **Recent software product for OO simulation – MODSIM III**
3.7 EXAMPLES OF APPLICATION-ORIENTED SIMULATION PACKAGES

- Oriented toward specific classes of applications – see book for software packages for:
 - Manufacturing
 - Communications
 - Process reengineering and service systems
 - Health care
 - Call centers
 - Standalone animation – links to multiple simulation-modeling packages