
11-1

CHAPTER 11

Variance-Reduction Techniques

11.1 Introduction ..2

11.2 Common Random Numbers ..4

11.2.1 Rationale...5

11.2.2 Applicability..6

11.2.3 Synchronization...8

11.2.4 Some Examples ..10

11.3 Antithetic Variates..14

11.4 Control Variates ..19

11.5 Indirect Estimation...26

11.6 Conditioning..29

11-2

11.1 Introduction

Main drawback of using simulation to study stochastic models:

Results are uncertain — have variance associated with them

Would like to have as little variance as possible — more precise results

One sure way to decrease the variance:

Run it some more (longer runs, additional replications)

Not free

Sometimes can manipulate simulation to reduce the variance of the output at little or

no additional cost — not just by running it some more

Another way of looking at it — try to achieve a desired level of precision (e.g.,

confidence-interval smallness) with less simulating — Variance-reduction
technique (VRT)

11-3

Often, exploit controllability of random-number generator to recycle previously
used random numbers and induce some kind of correlation

Basic relation used: For any RVs X and Y, and any constants a and b,

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y)

Several different VRTs in common (sometimes unconscious) use

Effectiveness of VRTs varies widely, unpredictably sometimes

Perhaps make preliminary “pilot” runs with and without a proposed VRT to

measure how well (and if) it is working

Implementing VRTs requires care and understanding of the model and code

Useful “model” of a simulation’s action to discuss VRTs:

RNG → U1, U2, ... ~
IID U(0, 1) → Simulation

model and code → Output X

 ↑

 Some complicated function
φ of U1, U2, ...

i.e., view X = φ(U1, U2, ...); want to estimate µ = E(X) = E[φ(U1, U2, ...)]

11-4

11.2 Common Random Numbers

Applies when goal is to compare two (or more) alternative systems

Probably most widely used, successful VRT

Often used unconsciously

Other names: correlated sampling, matched streams, or matched pairs

Possible drawback: may invalidate (or at least complicate) statistical methods (e.g.,

ranking/selection, ANOVA)

Intuition

Compare the two alternatives under similar (external) conditions

“Compare like with like” — blocking in experimental-design terminology

Then the observed differences are more likely attributable to the actual system

differences, rather than to the luck of the draw

11-5

11.2.1 Rationale

Estimate of difference is X1 – X2 (from one run of each)

Var(X1 – X2) = Var(X1) + Var(X2) – 2 Cov(X1, X2)

If independent runs were made, Cov(X1, X2) would be 0

Under CRN, we would expect that Cov(X1, X2) > 0, reducing Var(X1 – X2)

This effect clearly carries through on multiple runs of each

Implementation

Simulate system 1, get observation X1
Re-use the same random numbers used for system 1 to simulate system 2, and

get X2

Critical point: synchronization

Must re-use the same random numbers for the same purposes in the simulations
of the two systems

Failure to maintain synchronization of random-number usage can get the uses
mixed up and dilute the effect of CRN, or even make it backfire (increase the
variance); example later

Best way to maintain synchronization: Dedicate a separate random-number
stream to corresponding sources of randomness in the two systems
(interarrival times, cycle times on specific machines, pass/fail decisions on
inspections, etc.) — principal reason for having many separate and long
streams in a random-number generator

Also: Use inverse-transform method of variate generation wherever possible
(one U → one X for simplicity, and induce strongest possible correlation
between generated variates)

11-6

11.2.2 Applicability

Implicit Assumption About the Models: they will both react similarly to a

large/small random number Uk used for a particular purpose:

If not, could get Cov(X1, X2) < 0 and backfiring (possible but probably rare):

11-7

Success of CRN in Terms of φFunctions Representing the Simulation

Let φ1 and φ2 be the φ functions for the two alternatives being compared

First suppose the “simulation” involves only one input random number:

If φ1 and φ2 are both monotone in the same direction, then Cov[ϕ1(U), ϕ2(U)]

≥ 0, and so CRN will work (although how well we don’t know)

Stated another way, 021 ≥
du

d
du
d φφ

 is sufficient for CRN to work

Now, allow more than one input random number:

Def.: φ1 and φ2 are concordant if 021 ≥
∂
∂

∂
∂

kk uu
φφ

 for each fixed k

Thm.: If φ1 and φ2 are concordant then

Cov[φ1(U1, U2, ...), φ2(U1, U2, ...)] ≥ 0

 and so CRN will work

In practice, how can we tell if our two alternatives are concordant?

We can’t (reason for initial pilot experiments with and without CRN)

One important exception (has been shown to be concordant):

GI/G/s queues, as long as interarrival and service times are generated via inverse-
transform method

11-8

11.2.3 Synchronization

Cannot just “reset the seed” for second alternative and let the simulation run using a

single stream
Random-number usage in non-synchronized CRN for the M/M/1 vs. M/M/2 queue:

 k Uk Usage in M/M/1 Usage in M/M/2 Agree?
 1 0.401 A A Yes
 2 0.614 A A Yes
 3 0.434 S S Yes
 4 0.383 A A Yes
 5 0.506 S S Yes
 6 0.709 A A Yes
 7 0.185 S S Yes
 8 0.834 A A Yes
 9 0.646 A S No
 10 0.376 A A Yes
 11 0.348 S S Yes
 12 0.764 A A Yes
 13 0.446 A A Yes
 14 0.910 S A No
 15 0.474 S A No
 16 0.475 A S No
 17 0.852 S S Yes
 18 0.804 S S Yes
 19 0.723 S A No
 20 0.700 A A Yes

 197 0.574 A S No
 198 0.859 A A Yes
 199 0.096 A S No
 200 0.154 S A No
 201 0.326 S S Yes
 202 0.577 A
 . . .
 . . .
 219 0.656 S

Overall, only about half of the U’s were synchronized, which effectively neutralizes

the benefit of CRN (example below)

11-9

Synchronization Methods (and “Tricks”)

• Usually depends on structure of model and how its coded

• Dedicate a random-number stream to a particular source of randomness in the

model; use separate streams for different sources of randomness
o Make sure streams are long enough to avoid overlap — usually a rough

calculation can estimate the number of random numbers needed for a
particular purpose — if they’d overlap, then skip some intermediate streams

• To the extent possible, use the inverse-transform method of variate generation

since it maintains one-to-one correspondence between random numbers and
generated variates
o Also maximizes strength of correlation induced, among all variate-generation

approaches

• Feel free to “waste” some random numbers to maintain synchronization

• In queueing models, anticipate all of the random variates that an arriving entity

could require during its time in the system, generate them at the time of arrival,
and store them as attributes to ride along with the entity
o Potentially major downside — increased memory use
o Minor downside — generating variates that might not be needed for a

particular entity

• When using CRN in multiple replications, ensure that synchronization is

maintained on the 2nd and subsequent replications
o Could jump to new streams for future replications — think of this as a two-

dimensional stream-indexing scheme, or perhaps the replication streams
being “substreams” of the major streams dedicated to different sources of
randomness in the model

Clearly, it is highly desirable to have a random-number generator with a very large

number of very long streams, especially as computers continue to get faster

11-10

11.2.4 Some Examples

Earlier M/M/1 (fast server) vs. M/M/2 (slow servers) — more examples in text

Xij = average delay in queue from replication j of system i

Zj = X1j – X2j (pairing approach)

Made n = 100 pairs of runs, observed Z1, Z2, ..., Z100

Options on degree to which CRN was used:

I: Independent sampling (i.e., no CRN at all)
A: Use CRN on interarrival times, but generate service times

independently
S: Use CRN on service times, but generate interarrival times

independently
A & S: Use CRN on both interarrival and service times

 I A S A & S
Estimated variance of Zj
90% c.i. half-length
P(wrong answer)
Estimated Cor(X1, X2)

18.00
0.70
0.52

–0.17

9.02
0.49
0.37
0.33

8.80
0.49
0.40
0.44

0.07
0.04
0.03
0.995

11-11

Plot of individual Xij’s vs. replication number, to show stabilizing effect of CRN:

11-12

Plot of pairs (X1, X2) to show positive correlation:

Plot of Zj’s to show how CRN reduces the “spread” of the differences:

11-13

Ignoring Synchronization in M/M/1 vs. M/M/2

Still use the “same” random numbers, but program the model so that

synchronization is ignored (two different programs that ignore it) — all codes
are still correct in terms of simulating the models properly

Statistical consequences:

 Proper full synch. Ignore synch. Ignore synch.
another way

s2(100) 0.07 16.80 12.00
90% c.i. half-length 0.04 0.67 0.57
Proportion wrong order 0.07 0.43 0.42
Sample correlation 0.997 0.018 –0.028

Ignoring synchronization effectively neutralized the effect of CRN, underscoring the

importance of synchronizing to as great an extent that is possible, in order to
reap the full benefits of CRN

11-14

11.3 Antithetic Variates

Use for a single system (not comparisons)

Like CRN, recycle random numbers to induce correlation, but this time we want

negative correlation

Intuition

Counterbalance a “large” observation with a “small” one
The average of the two observations should thus tend to be closer to the true

expectation than if they were independent

Implementation

Simulate the system, get observation X(1)

Re-use the same random numbers used to get X(1), but in their complementary
form 1 – U, to get X(2) — valid since 1 – U is also ~ U(0, 1)

Use [X(1) + X(2)]/2 as “an observation” and replicate, etc. for analysis
Critical point:

Must re-use the same random numbers for the same purposes in the two
simulations of the system (just as in CRN)

Failure to maintain this synchronization of random-number usage can get the
uses mixed up and dilute the effect of AV, or even make it backfire
(increase the variance)

Best way to maintain synchronization: Random-number-stream dedication,
as for CRN (but same techniques, tricks apply as in CRN)

Also: Use inverse-transform for variate generation, as for CRN

11-15

Probabilistic Rationale for AV

Estimate of performance measure is [X(1) + X(2)]/2, which has variance
Var{[X(1) + X(2)]/2} = {Var[X(1)] + Var[X(2)] + 2 Cov[X(1), X(2)]}/4

If independent runs were made, Cov[X(1), X(2)] would be 0

Under AV, expect that Cov[X(1), X(2)] < 0, reducing Var{[X(1) + X(2)]/2}

Implicit Assumption About the Model

It will react monotonically (up or down) to a large/small random number used

for a particular purpose

In terms of φ-function representation of simulation, it is sufficient that for each k,

for
ku∂

∂φ
 to have the same sign for all uk ∈ [0, 1]

In this case, Cov[φ(U1, U2, ...), φ(1 – U1, 1 – U2, ...)] ≤ 0 and so AV is
guaranteed to work (but again, we don’t know how well)

If not, could get Cov(X(1), X(2)) > 0 and backfiring

11-16

Example of Effectiveness of AV

M/M/1 queue, average-delay measure

Made 100 pairs of runs using both independent sampling within a pair, and AV,

observed 100 values Xj for [X(1) + X(2)]/2

 Independent AV
Estimated variance of Xj
90% c.i. half-length
Estimated Cor(X(1), X(2))

4.84
0.36

–0.07

1.94
0.23

–0.52

Plot of X(1), X(2), and Xj by replication, to show stabilizing effect of AV:

11-17

Dot plot of Xj’s to show how AV reduces their spread:

Plot of X(2) vs. X(1) to show negative correlation:

11-18

Some Issues with AV

Partial AV if difficult or inconvenient to maintain full synchronization:

Synchronize what you can
Generate the rest independently
(Same idea applies to CRN as well)

Same idea, but generate antithetic behavior other than replacing U by 1 – U:

Queueing simulation
Run 1: as usual
Run 2: reverse use of each U (interarrival vs. service)
In M/M/1, got 65% variance reduction with this idea
Clearly specialized to models where the basic inputs are themselves antithetic:

Big interarrival ⇒ low congestion

Big service ⇒ high congestion

Generalized AV: rotation sampling

When comparing two systems, use CRN and AV together?

Primary run Antithetic run
Alternative 1 X1

(1) ← AV → X1
(2)

↑
CRN

↓

↑
CRN

↓

Alternative 2 X2
(1) ← AV → X2

(2)

Assume that both AV and CRN are working properly “on their own”
Does this guarantee variance reduction in overall estimate of difference, in

comparison with what we’d get with independent sampling throughout?

11-19

11.4 Control Variates

Suppose X = output random variable of interest, want to estimate µ = E(X)

Intuition and Implementation

Let Y be another random variable involved in some way in the simulation that is

thought to be correlated (+ or –) with X

Also: We must know (exactly) the value of ν = E(Y)

If X is a congestion measure for a queue, then Y could be:

Average of a fixed number of service times (positive correlation?)
Average of a fixed number of interarrival times (negative?)
Result of simulating a similar but simpler system (with CRN), for which exact

queueing-theoretic results are available (positive?)

Run the simulation(s), observe X and Y —suppose Cor(X, Y) > 0

If Y > ν (which we can tell since we know ν), then suspect that X > µ as well,
so adjust X downward

If Y < ν , then suspect that X < µ as well, so adjust X upward

(Adjustments are in the opposite direction if Cor(X, Y) < 0)

This adjustment pulls X in toward µ from run to run, reducing variability

Thus, Y is used to adjust X, or partially control it, so Y is called a control variate

for X

11-20

Probabilistic Rationale

Use controlled estimator XC = X – a(Y – ν) for some value a

E(XC) = µ, so it’s unbiased for µ, as is X; hope that Var(XC) < Var(X)

The parameter a will have same sign as Cor(X, Y) — adjustment is in proper

direction

The controlled estimator has another random component involving the random

variable Y, so the adjustment must compensate for this additional variation (and
then some):

Var(XC) = Var(X) + a2Var(Y) – 2a Cov(X, Y),
so get a variance reduction if and only if 2a Cov(X, Y) > a2Var(Y)

Key questions:

What is a? How do we choose it?
Where do we get the control variate(s)?
Extend to multiple control variates Y1, Y2, ..., Ym?

Pick a = ±1?

Suppose we know the sign of Cor(X, Y), and pick

<−

>+
=

0),(1

0),(1

YXCorif

YXCorif
a

Then get variance reduction if and only if |Cov(X, Y)| > Var(Y)/2, placing entire
burden for success on finding a “powerful” enough control variate Y

11-21

Pick a Optimally?
View Var(XC) as a function of a; pick a to minimize it:

let g(a) = Var(XC) = Var(X) + a2Var(Y) – 2a Cov(X, Y)

Set g′(a) = 2a Var(Y) – 2Cov(X, Y) = 0
Solve for variance-minimizing value a* = Cov(X, Y) / Var(Y)
With optimal a*,

Var(*
CX) = Var(X) – [Cov(X, Y)]2/Var(Y) = (1 – 2

XYρ)Var(X) ≤ Var(X),

where 2
XYρ = [Cor(X, Y)]2 ≥ 0

So a variance reduction is guaranteed regardless of how weak a controller Y
might be (i.e., how close Cor(X, Y) is to 0)

In fact, with optimal a*, for stronger controllers Y, Cor(X, Y) → ±1 and so
Var(*

CX) → 0 (a nice situation indeed!!)

But in reality, we won’t be able to find the optimal a*:

May or may not know Var(Y)
Certainly will not know Cov(X, Y) since X is the simulation output r.v.

Must estimate a* from data somehow:

Let)(ˆ nCXY and)(2 nSY be the usual sample estimators of Cov(X, Y) and Var(Y),
respectively, from n replications of the simulation

Estimate a* by *â (n) =)(ˆ nCXY /)(2 nSY (use Var(Y) on bottom, if known)

Note that)(ˆ nCXY and)(ˆ nCXY are strongly consistent for Cov(X, Y) and Var(Y),
respectively, so *â (n) is strongly consistent for a* as well

Final (feasible) controlled point estimator from the n replications:
[]ν−−=)()(*ˆ)()(*

..
nYnanXnX

vranow
C

The bad news: Since *â (n) is a r.v. not independent of)(nY ,)(* nX C is no
longer unbiased for µ; some remedies (each has drawbacks):

Splitting the sample
Jackknifing
Hoping the bias is more than offset by variance reduction (MSE??)

11-22

Multiple Controllers

May have several choices for Y

Y(1) = mean of interarrival times
Y(2) = mean of service times
Y(3) = proportion of parts failing at an inspection station

Define the multiple-control-variate estimator ∑
=

−−=
m

l

ll
lC YaXX

1

)()()(ν , where

E(Y(l)) = ν(l) (which must be known)

Allowing all possible dependencies (between control variates and X, as well as one

control variate and another),

Var(XC) = Var(X) + ∑
=

m

l
la

1

2 Var(Y(l)) – 2∑
=

m

l
la

1

Cov(X, Y(l)) +

2∑∑
=

−

=

m

l

l

l
ll aa

2

1

11

1

21
Cov(

1l
Y ,

2l
Y)

Viewing this as a function of the al’s and minimizing over them, get optimal *
la ’s

similar to single-controller case

Still must estimate the optimal *
la ’s, still have potential bias problems, same

remedies

Finding optimal *
la ’s turns out to be equivalent to finding the β coefficients in a

particular multiple-regression problem, and so CV is sometimes called
regression sampling

11-23

Sources of Control Variates

Typically, control variates (the Y(l)’s) come from three sources:

1. Internal

Simple functions of variates generated for input to the simulation

Average of interarrival, processing times
Proportions of “hard” vs. “easy” jobs generated

Easiest, lowest-cost — don’t have to be very powerful to “pay off”

Sometimes called concomitant since they are there anyway

2. External

Construct a system that is similar to, but simpler than, the one being simulated

Must be simple enough to admit an analytic solution (for the ν)

Simulate this other system alongside the one of interest, using CRN

Expect that Cor(X, Y) > 0

e.g., system of interest is Uniform/Gamma/1 queue
Make the other system M/M/1 (known mean performance measures)

Clearly not costless, so Y must be pretty powerful if this is to pay off

11-24

3. Multiple Point Estimators

Suppose that for the system of interest we have k different unbiased point

estimators X(1), ..., X(k) for µ
(How? Indirect estimation, discussed below, is one way)

Let b1, ..., bk be real numbers with b1 + ... + bk = 1 (but bi’s can be < 0)

Then ∑
=

=
k

i

i
iC XbX

1

)(is also unbiased for µ

To put this into CV notation, note that b1 = 1 – b2 – ... – bk, so

∑

∑∑

∑

=

==

=

−−=

+

−=

+−−−=

k

i

i
i

k

i

i
i

k

i
i

k

i

i
ikC

XXbX

XbXbX

XbXbbX

2

)()1()1(

2

)()1(

2

)1(

2

)()1(
2

)(

)1(L

so we get k – 1 control variates X(1) – X(i) for i = 2, 3, ..., k

Somewhat specialized

Must pay the price for computing the extra estimators

11-25

Example of Effectiveness of CV

M/M/1 queue, X = average of 100 delays in queue, traffic intensity = 0.9

To estimate optimal a*, made n = 10 replications

Variances estimated “externally” by repeating the above 100 times:

Control variate

Variance
without CV

Variance with
CV

Variance
reduction

Avg. service time, S 0.99 0.66 33%

Avg. interarrival time, A 0.99 0.89 10%

S – A (not multiple CV) 0.99 0.56 43%

11-26

11.5 Indirect Estimation

Mentioned before: Usually want several performance measures

Expected time in queue(s) of parts
Time-average queue length(s)
Machine utilizations(s)

Intuition and Implementation

For some classes of models, there are relationships among these measures that

might be used to get better (lower-variance) estimators

Best-known examples: Queueing models

Notation: λ = arrival rate
 L = Expected time-average number in system
 Q = Expected time-average number in queue
 w = Expected time a customer spends in system
 d = Expected time a customer spends in queue
 S = Random variable for service time

Relationships: L = λw

 Q = λd
 w = d + E(S)

These relationships are valid for a very wide class of queueing systems

Conservation
Equations

11-27

Options for estimating w:

Directly: Collect times in system, average them

Indirectly: Estimate d, then add E(S) (which would be known)

Seems clear: Indirect method is better, since direct method essentially estimates

the known value of E(S)

Moral: Don’t estimate things that you know

Options for estimating Q:

Directly: Time-average via integrating under Q(t) curve: Q

Indirectly: Estimate d directly (d), then multiply by λ

Fact (but not so clear): Var(λ d) < Var(Q)

Also: Better to estimate L indirectly via w, which in turn is best estimated by

d + E(S) — estimate L by λ(d + E(S))

Summing up: Get “everything” indirectly via d

11-28

Example of Effectiveness of IA

Exact asymptotic (length of simulation → ∞) variance reductions in using indirect

rather than direct estimator for Q (ρ is the traffic intensity):

 % Variance Reduction
Service-time distribution ρ = 0.5 ρ = 0.7 ρ = 0.9
Exponential 15 11 4
4-Erlang 22 17 7
Hyperexponential 4 3 2

Unfortunately, method becomes weaker as ρ increases (just when you need

variance reduction the most)

This can be remedied by looking at optimally-weighted combinations of all the

estimators, in a way reminiscent of CV (details, references in text)

11-29

11.6 Conditioning

Use knowledge of “parts” of output, rather than estimating them (similar in spirit to

indirect estimation)

Output random variable X, want to estimate µ = E(X)

Suppose there is another random variable Z such that if we know the value of Z,

we’d know the expected value of X for sure
i.e., the conditional expectation E(X | Z = z) is a known, deterministic function

of z
Example: Single-server queueing system

X is a delay in queue of an arriving customer
Service times are exponential (so memoryless) with mean E(S)
Let Z = number of customers already in queue when customer arrives
Then E(X | Z = z) = (z + 1)E(S)

For simplicity, suppose Z is discrete with mass function p(z) = P(Z = z)

Partitioning over the space of Z,

µ = E(X) = EZ[E(X | Z)] = ∑ =
z

zpzZXE)()|(

Know: E(X | Z = z) components
Don’t know: p(z) components, so simulate just Z to estimate them

Procedure: Simulate to observe a value z for Z, then compute E(X | Z = z) to serve

as a “basic observation”

Single-server queue example: Use simulation to generate values z for number in

queue, then tally values of (z + 1)E(S)

11-30

Variance advantage:
[] []

)(Var
)|(Var)(Var)|(Var

X
ZXEXZXE ZZ

≤
−=

Trick: Specify the “right” Z — want:

Ease of generating Z (still have to simulate it)

Ease of computing the known deterministic function E(X | Z = z), any z

[])|(Var ZXEZ to be large (see equation) — we never have to simulate X|Z so
don’t care how big its variance is

Issues:

Clearly need to understand model, exploit special structure

Often get as a by-product the phenomenon of artificially increasing the

occurrence of rare but important events

Examples: (details in text)

Branch points in computer-performance model, condition on branching decision

and queue length at next station decided upon

Estimate response time of fire trucks to serious fires, condition on location of

fire trucks

