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11.1  Introduction 
 
 
Main drawback of using simulation to study stochastic models: 

 
Results are uncertain — have variance associated with them 
 
Would like to have as little variance as possible — more precise results 

 
 
One sure way to decrease the variance: 

 
Run it some more (longer runs, additional replications) 
 
Not free 

 
 
Sometimes can manipulate simulation to reduce the variance of the output at little or 

no additional cost — not just by running it some more 
 
Another way of looking at it — try to achieve a desired level of precision (e.g., 

confidence-interval smallness) with less simulating — Variance-reduction 
technique (VRT) 
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Often, exploit controllability of random-number generator to recycle previously 
used random numbers and induce some kind of correlation 
 
Basic relation used:  For any RVs X and Y, and any constants a and b, 

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y) 
 
 
Several different VRTs in common (sometimes unconscious) use 
 
 
Effectiveness of VRTs varies widely, unpredictably sometimes 

 
Perhaps make preliminary “pilot” runs with and without a proposed VRT to 

measure how well (and if) it is working 
 
 
Implementing VRTs requires care and understanding of the model and code 
 
 
Useful “model” of a simulation’s action to discuss VRTs: 
 

RNG → U1, U2, ... ~ 
IID U(0, 1) → Simulation 

model and code → Output X 

    ↑   

   Some complicated function 
φ of U1, U2, ... 

 

 
 

i.e., view X = φ(U1, U2, ...); want to estimate µ = E(X) = E[φ(U1, U2, ...)] 
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11.2  Common Random Numbers 
 
Applies when goal is to compare two (or more) alternative systems 
 
Probably most widely used, successful VRT 

 
Often used unconsciously 

 
Other names:  correlated sampling, matched streams, or matched pairs 
 
Possible drawback:  may invalidate (or at least complicate) statistical methods (e.g., 

ranking/selection, ANOVA) 
 
Intuition 

 
Compare the two alternatives under similar (external) conditions 
 
“Compare like with like” — blocking in experimental-design terminology 
 
Then the observed differences are more likely attributable to the actual system 

differences, rather than to the luck of the draw 
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11.2.1  Rationale 
 
Estimate of difference is X1 – X2 (from one run of each) 
 
Var(X1 – X2) = Var(X1) + Var(X2) – 2 Cov(X1, X2) 
 
If independent runs were made, Cov(X1, X2) would be 0 
 
Under CRN, we would expect that Cov(X1, X2) > 0, reducing Var(X1 – X2) 
 
This effect clearly carries through on multiple runs of each 
 
Implementation 

Simulate system 1, get observation X1 
Re-use the same random numbers used for system 1 to simulate system 2, and 

get X2 
 
Critical point:  synchronization 

Must re-use the same random numbers for the same purposes in the simulations 
of the two systems 

Failure to maintain synchronization of random-number usage can get the uses 
mixed up and dilute the effect of CRN, or even make it backfire (increase the 
variance); example later 

Best way to maintain synchronization:  Dedicate a separate random-number 
stream to corresponding sources of randomness in the two systems 
(interarrival times, cycle times on specific machines, pass/fail decisions on 
inspections, etc.) — principal reason for having many separate and long 
streams in a random-number generator 

Also:  Use inverse-transform method of variate generation wherever possible 
(one U → one X for simplicity, and induce strongest possible correlation 
between generated variates) 
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11.2.2  Applicability 
 
 
Implicit Assumption About the Models:  they will both react similarly to a 

large/small random number Uk used for a particular purpose: 
 

 
 
If not, could get Cov(X1, X2) < 0 and backfiring (possible but probably rare): 
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Success of CRN in Terms of φFunctions Representing the Simulation 
 
 

Let φ1 and φ2 be the φ functions for the two alternatives being compared 

 
First suppose the “simulation” involves only one input random number: 

If φ1 and φ2 are both monotone in the same direction, then Cov[ϕ1(U), ϕ2(U)] 

≥ 0, and so CRN will work (although how well we don’t know) 

Stated another way, 021 ≥
du

d
du
d φφ

 is sufficient for CRN to work 

 
Now, allow more than one input random number: 

Def.:  φ1 and φ2 are concordant if  021 ≥
∂
∂

∂
∂

kk uu
φφ

 for each fixed k 

Thm.:  If φ1 and φ2 are concordant then 

Cov[φ1(U1, U2, ...), φ2(U1, U2, ...)] ≥ 0 

 and so CRN will work 
 

In practice, how can we tell if our two alternatives are concordant? 
 
We can’t (reason for initial pilot experiments with and without CRN) 
 
One important exception (has been shown to be concordant): 

GI/G/s queues, as long as interarrival and service times are generated via inverse-
transform method 
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11.2.3  Synchronization 
 
Cannot just “reset the seed” for second alternative and let the simulation run using a 

single stream 
Random-number usage in non-synchronized CRN for the M/M/1 vs. M/M/2 queue: 

 k Uk Usage in M/M/1 Usage in M/M/2 Agree? 
 1 0.401 A A Yes 
 2 0.614 A A Yes 
 3 0.434 S S Yes 
 4 0.383 A A Yes 
 5 0.506 S S Yes 
 6 0.709 A A Yes 
 7 0.185 S S Yes 
 8 0.834 A A Yes 
 9 0.646 A S No 
 10 0.376 A A Yes 
 11 0.348 S S Yes 
 12 0.764 A A Yes 
 13 0.446 A A Yes 
 14 0.910 S A No 
 15 0.474 S A No 
 16 0.475 A S No 
 17 0.852 S S Yes 
 18 0.804 S S Yes 
 19 0.723 S A No 
 20 0.700 A A Yes 
 . . . . . 
 . . . . . 
 197 0.574 A S No 
 198 0.859 A A Yes 
 199 0.096 A S No 
 200 0.154 S A No 
 201 0.326 S S Yes 
 202 0.577 A 
 . . . 
 . . . 
 219 0.656 S 

 
Overall, only about half of the U’s were synchronized, which effectively neutralizes 

the benefit of CRN (example below) 
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Synchronization Methods (and “Tricks”) 
 
• Usually depends on structure of model and how its coded 

 
• Dedicate a random-number stream to a particular source of randomness in the 

model; use separate streams for different sources of randomness 
o Make sure streams are long enough to avoid overlap — usually a rough 

calculation can estimate the number of random numbers needed for a 
particular purpose — if they’d overlap, then skip some intermediate streams 

 
• To the extent possible, use the inverse-transform method of variate generation 

since it maintains one-to-one correspondence between random numbers and 
generated variates 
o Also maximizes strength of correlation induced, among all variate-generation 

approaches 
 
• Feel free to “waste” some random numbers to maintain synchronization 
 
• In queueing models, anticipate all of the random variates that an arriving entity 

could require during its time in the system, generate them at the time of arrival, 
and store them as attributes to ride along with the entity  
o Potentially major downside — increased memory use 
o Minor downside — generating variates that might not be needed for a 

particular entity 
 
• When using CRN in multiple replications, ensure that synchronization is 

maintained on the 2nd and subsequent replications 
o Could jump to new streams for future replications — think of this as a two-

dimensional stream-indexing scheme, or perhaps the replication streams 
being “substreams” of the major streams dedicated to different sources of 
randomness in the model 

 
Clearly, it is highly desirable to have a random-number generator with a very large 

number of very long streams, especially as computers continue to get faster 
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11.2.4  Some Examples 
 
 
Earlier M/M/1 (fast server) vs. M/M/2 (slow servers) — more examples in text 
 
Xij = average delay in queue from replication j of system i 
 
Zj = X1j – X2j (pairing approach) 
 
Made n = 100 pairs of runs, observed Z1, Z2, ..., Z100 
 
Options on degree to which CRN was used: 

I: Independent sampling (i.e., no CRN at all) 
A: Use CRN on interarrival times, but generate service times 

independently 
S: Use CRN on service times, but generate interarrival times 

independently 
A & S: Use CRN on both interarrival and service times 
 

 I A S A & S 
Estimated variance of Zj 
90% c.i. half-length 
P(wrong answer) 
Estimated Cor(X1, X2) 

18.00 
0.70 
0.52 

–0.17 

9.02 
0.49 
0.37 
0.33 

8.80 
0.49 
0.40 
0.44 

0.07 
0.04 
0.03 
0.995 
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Plot of individual Xij’s vs. replication number, to show stabilizing effect of CRN: 
 

 
 

 



11-12 

Plot of pairs (X1, X2) to show positive correlation: 

 
 
Plot of Zj’s to show how CRN reduces the “spread” of the differences: 
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Ignoring Synchronization in M/M/1 vs. M/M/2 
 
 
Still use the “same” random numbers, but program the model so that 

synchronization is ignored (two different programs that ignore it) — all codes 
are still correct in terms of simulating the models properly 

 
Statistical consequences: 

 Proper full synch. Ignore synch. Ignore synch. 
another way 

s2(100)  0.07 16.80 12.00 
90% c.i. half-length  0.04  0.67  0.57 
Proportion wrong order  0.07  0.43  0.42 
Sample correlation  0.997  0.018 –0.028 

 
Ignoring synchronization effectively neutralized the effect of CRN, underscoring the 

importance of synchronizing to as great an extent that is possible, in order to 
reap the full benefits of CRN 
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11.3  Antithetic Variates 
 
Use for a single system (not comparisons) 
 
Like CRN, recycle random numbers to induce correlation, but this time we want 

negative correlation 
 
Intuition 

Counterbalance a “large” observation with a “small” one 
The average of the two observations should thus tend to be closer to the true 

expectation than if they were independent 
 
Implementation 

Simulate the system, get observation X(1) 

Re-use the same random numbers used to get X(1), but in their complementary 
form 1 – U, to get X(2) — valid since 1 – U is also ~ U(0, 1) 

Use [X(1) + X(2)]/2 as “an observation” and replicate, etc. for analysis 
Critical point: 

Must re-use the same random numbers for the same purposes in the two 
simulations of the system (just as in CRN) 

Failure to maintain this synchronization of random-number usage can get the 
uses mixed up and dilute the effect of AV, or even make it backfire 
(increase the variance) 

Best way to maintain synchronization:  Random-number-stream dedication, 
as for CRN (but same techniques, tricks apply as in CRN) 

Also:  Use inverse-transform for variate generation, as for CRN 
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Probabilistic Rationale for AV 
 

Estimate of performance measure is [X(1) + X(2)]/2, which has variance 
Var{[X(1) + X(2)]/2} = {Var[X(1)] + Var[X(2)] + 2 Cov[X(1), X(2)]}/4

  

If independent runs were made, Cov[X(1), X(2)] would be 0 
 

Under AV, expect that Cov[X(1), X(2)] < 0, reducing Var{[X(1) + X(2)]/2} 
 
 

Implicit Assumption About the Model 
 
It will react monotonically (up or down) to a large/small random number used 

for a particular purpose 
 

In terms of φ-function representation of simulation, it is sufficient that for each k, 

for 
ku∂

∂φ
 to have the same sign for all uk ∈ [0, 1] 

 

In this case, Cov[φ(U1, U2, ...), φ(1 – U1, 1 – U2, ...)] ≤ 0 and so AV is 
guaranteed to work (but again, we don’t know how well) 

 

If not, could get Cov(X(1), X(2)) > 0 and backfiring 
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Example of Effectiveness of AV 
 
M/M/1 queue, average-delay measure 
 
Made 100 pairs of runs using both independent sampling within a pair, and AV, 

observed 100 values Xj for [X(1) + X(2)]/2 
 

 Independent AV 
Estimated variance of Xj 
90% c.i. half-length 
Estimated Cor(X(1), X(2)) 

4.84 
0.36 

–0.07 

1.94 
0.23 

–0.52 

 
Plot of X(1), X(2), and Xj by replication, to show stabilizing effect of AV: 
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Dot plot of Xj’s to show how AV reduces their spread: 

 
 
Plot of X(2) vs. X(1) to show negative correlation: 
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Some Issues with AV 
 
Partial AV if difficult or inconvenient to maintain full synchronization: 

Synchronize what you can 
Generate the rest independently 
(Same idea applies to CRN as well) 

 
Same idea, but generate antithetic behavior other than replacing U by 1 – U: 

Queueing simulation 
Run 1:  as usual 
Run 2:  reverse use of each U (interarrival vs. service) 
In M/M/1, got 65% variance reduction with this idea 
Clearly specialized to models where the basic inputs are themselves antithetic: 

Big interarrival ⇒ low congestion 

Big service ⇒ high congestion 
 
Generalized AV:  rotation sampling 
 
When comparing two systems, use CRN and AV together? 
 

      

Primary run Antithetic run
Alternative 1 X1

(1) ← AV → X1
(2)

↑
CRN

↓

↑
CRN

↓

Alternative 2 X2
(1) ← AV → X2

(2)

 

 
Assume that both AV and CRN are working properly “on their own” 
Does this guarantee variance reduction in overall estimate of difference, in 

comparison with what we’d get with independent sampling throughout? 
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11.4  Control Variates 
 
Suppose X = output random variable of interest, want to estimate µ = E(X) 
 
Intuition and Implementation 
 
Let Y be another random variable involved in some way in the simulation that is 

thought to be correlated (+ or –) with X 
 

Also:  We must know (exactly) the value of ν = E(Y) 
 
If X is a congestion measure for a queue, then Y could be: 

Average of a fixed number of service times (positive correlation?) 
Average of a fixed number of interarrival times (negative?) 
Result of simulating a similar but simpler system (with CRN), for which exact 

queueing-theoretic results are available (positive?) 
 
Run the simulation(s), observe X and Y —suppose Cor(X, Y) > 0 

 

If Y > ν (which we can tell since we know ν), then suspect that X > µ as well, 
so adjust X downward 

 

If Y < ν , then suspect that X < µ as well, so adjust X upward 
 
(Adjustments are in the opposite direction if Cor(X, Y) < 0) 

 
This adjustment pulls X in toward µ from run to run, reducing variability 
 
Thus, Y is used to adjust X, or partially control it, so Y is called a control variate 

for X 
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Probabilistic Rationale 
 
Use controlled estimator XC = X – a(Y – ν) for some value a 
 
E(XC) = µ, so it’s unbiased for µ, as is X; hope that Var(XC) < Var(X) 
 
The parameter a will have same sign as Cor(X, Y) — adjustment is in proper 

direction 
 
The controlled estimator has another random component involving the random 

variable Y, so the adjustment must compensate for this additional variation (and 
then some): 

Var(XC) = Var(X) + a2Var(Y) – 2a Cov(X, Y), 
so get a variance reduction if and only if 2a Cov(X, Y) > a2Var(Y) 

 
Key questions: 

What is a?  How do we choose it? 
Where do we get the control variate(s)? 
Extend to multiple control variates Y1, Y2, ..., Ym? 

 
Pick a = ±1? 

Suppose we know the sign of Cor(X, Y), and pick 




<−

>+
=

0),(1

0),(1

YXCorif

YXCorif
a  

Then get variance reduction if and only if |Cov(X, Y)| > Var(Y)/2, placing entire 
burden for success on finding a “powerful” enough control variate Y 
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Pick a Optimally? 
View Var(XC) as a function of a; pick a to minimize it: 

let g(a) = Var(XC) = Var(X) + a2Var(Y) – 2a Cov(X, Y) 

Set g′(a) = 2a Var(Y) – 2Cov(X, Y) = 0 
Solve for variance-minimizing value a* = Cov(X, Y) / Var(Y)  
With optimal a*, 

Var( *
CX ) = Var(X) – [Cov(X, Y)]2/Var(Y) = (1 – 2

XYρ )Var(X) ≤ Var(X), 

where 2
XYρ  = [Cor(X, Y)]2 ≥ 0 

So a variance reduction is guaranteed regardless of how weak a controller Y 
might be (i.e., how close Cor(X, Y) is to 0) 

In fact, with optimal a*, for stronger controllers Y, Cor(X, Y) → ±1 and so 
Var( *

CX ) → 0 (a nice situation indeed!!) 
 
But in reality, we won’t be able to find the optimal a*: 

May or may not know Var(Y) 
Certainly will not know Cov(X, Y) since X is the simulation output r.v. 

 
Must estimate a* from data somehow: 

Let )(ˆ nCXY  and )(2 nSY  be the usual sample estimators of Cov(X, Y) and Var(Y), 
respectively, from n replications of the simulation 

Estimate a* by *â (n) = )(ˆ nCXY / )(2 nSY  (use Var(Y) on bottom, if known) 

Note that )(ˆ nCXY  and )(ˆ nCXY  are strongly consistent for Cov(X, Y) and Var(Y), 
respectively, so *â (n) is strongly consistent for a* as well 

Final (feasible) controlled point estimator from the n replications: 
[ ]ν−−= )()(*ˆ)()(*

..
nYnanXnX

vranow
C  

The bad news:  Since *â (n) is a r.v. not independent of )(nY , )(* nX C  is no 
longer unbiased for µ; some remedies (each has drawbacks): 

Splitting the sample 
Jackknifing 
Hoping the bias is more than offset by variance reduction (MSE??) 
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Multiple Controllers 
 
May have several choices for Y 

Y(1) = mean of interarrival times 
Y(2) = mean of service times 
Y(3) = proportion of parts failing at an inspection station 

 

Define the multiple-control-variate estimator ∑
=

−−=
m

l

ll
lC YaXX

1

)()( )( ν , where 

E(Y(l)) = ν(l) (which must be known) 
 
Allowing all possible dependencies (between control variates and X, as well as one 

control variate and another), 

Var(XC) = Var(X) + ∑
=

m

l
la

1

2 Var(Y(l)) – 2∑
=

m

l
la

1

Cov(X, Y(l)) + 

2∑∑
=

−

=

m

l

l

l
ll aa

2

1

11

1

21
Cov(

1l
Y ,

2l
Y ) 

 

Viewing this as a function of the al’s and minimizing over them, get optimal *
la ’s 

similar to single-controller case 
 

Still must estimate the optimal *
la ’s, still have potential bias problems, same 

remedies 
 

Finding optimal *
la ’s turns out to be equivalent to finding the β coefficients in a 

particular multiple-regression problem, and so CV is sometimes called 
regression sampling 
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Sources of Control Variates 
 
 
Typically, control variates (the Y(l)’s) come from three sources: 
 
 
1.  Internal 

 
Simple functions of variates generated for input to the simulation 

Average of interarrival, processing times 
Proportions of “hard” vs. “easy” jobs generated 

 
Easiest, lowest-cost — don’t have to be very powerful to “pay off” 
 
Sometimes called concomitant since they are there anyway 

 
 
2.  External 

 
Construct a system that is similar to, but simpler than, the one being simulated 
 

Must be simple enough to admit an analytic solution (for the ν) 
 
Simulate this other system alongside the one of interest, using CRN 
 
Expect that Cor(X, Y) > 0 

e.g., system of interest is Uniform/Gamma/1 queue 
Make the other system M/M/1 (known mean performance measures) 

 
Clearly not costless, so Y must be pretty powerful if this is to pay off 
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3.  Multiple Point Estimators 
 
Suppose that for the system of interest we have k different unbiased point 

estimators X(1), ..., X(k) for µ 
(How?  Indirect estimation, discussed below, is one way) 

 

Let b1, ..., bk be real numbers with b1 + ... + bk = 1 (but bi’s can be < 0) 

Then ∑
=

=
k

i

i
iC XbX

1

)(  is also unbiased for µ 

To put this into CV notation, note that b1 = 1 – b2 – ... – bk, so 

∑

∑∑

∑

=

==

=

−−=

+







−=

+−−−=

k

i

i
i

k

i

i
i

k

i
i

k

i

i
ikC

XXbX

XbXbX

XbXbbX

2

)()1()1(

2

)()1(

2

)1(

2

)()1(
2

)(

)1( L

 

 
so we get k – 1 control variates X(1) – X(i) for i = 2, 3, ..., k 

 
Somewhat specialized 
 
Must pay the price for computing the extra estimators 
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Example of Effectiveness of CV 
 
 
M/M/1 queue, X = average of 100 delays in queue, traffic intensity = 0.9 
 
To estimate optimal a*, made n = 10 replications 
 
Variances estimated “externally” by repeating the above 100 times: 
 

 
Control variate 

Variance 
without CV 

Variance with 
CV 

Variance 
reduction 

Avg. service time, S  0.99 0.66 33% 

Avg. interarrival time, A  0.99 0.89 10% 

S  – A  (not multiple CV) 0.99 0.56 43% 
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11.5  Indirect Estimation 
 
 
Mentioned before:  Usually want several performance measures 

Expected time in queue(s) of parts 
Time-average queue length(s) 
Machine utilizations(s) 

 
 
Intuition and Implementation 
 
For some classes of models, there are relationships among these measures that 

might be used to get better (lower-variance) estimators 
 
Best-known examples:  Queueing models 
 

Notation: λ = arrival rate 
  L = Expected time-average number in system 
  Q = Expected time-average number in queue 
  w = Expected time a customer spends in system 
  d = Expected time a customer spends in queue 
  S = Random variable for service time 
 

Relationships: L = λw 

  Q = λd 
  w = d + E(S) 
 
These relationships are valid for a very wide class of queueing systems 

Conservation 
Equations 



11-27 

Options for estimating w: 
 
Directly:  Collect times in system, average them 
 
Indirectly:  Estimate d, then add E(S) (which would be known) 
 
Seems clear:  Indirect method is better, since direct method essentially estimates 

the known value of E(S) 
 
Moral:  Don’t estimate things that you know 

 
 
Options for estimating Q: 

 

Directly:  Time-average via integrating under Q(t) curve:  Q  

 

Indirectly:  Estimate d directly (d ), then multiply by λ 
 

Fact (but not so clear):  Var(λ d ) < Var(Q ) 
 
 
Also:  Better to estimate L indirectly via w, which in turn is best estimated by  

d + E(S) — estimate L by λ(d  + E(S)) 
 
 

Summing up:  Get “everything” indirectly via d  
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Example of Effectiveness of IA 
 
 
Exact asymptotic (length of simulation → ∞) variance reductions in using indirect 

rather than direct estimator for Q  (ρ is the traffic intensity): 
 

 % Variance Reduction 
Service-time distribution ρ = 0.5 ρ = 0.7 ρ = 0.9 
Exponential 15 11 4 
4-Erlang 22 17 7 
Hyperexponential 4 3 2 

 
Unfortunately, method becomes weaker as ρ increases (just when you need 

variance reduction the most) 
 
This can be remedied by looking at optimally-weighted combinations of all the 

estimators, in a way reminiscent of CV (details, references in text) 
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11.6  Conditioning 
 
Use knowledge of “parts” of output, rather than estimating them (similar in spirit to 

indirect estimation) 
 
Output random variable X, want to estimate µ = E(X) 
 
Suppose there is another random variable Z such that if we know the value of Z, 

we’d know the expected value of X for sure 
i.e., the conditional expectation E(X | Z = z) is a known, deterministic function 

of z 
Example:  Single-server queueing system 

X is a delay in queue of an arriving customer 
Service times are exponential (so memoryless) with mean E(S) 
Let Z = number of customers already in queue when customer arrives 
Then E(X | Z = z) = (z + 1)E(S) 

 
For simplicity, suppose Z is discrete with mass function p(z) = P(Z = z) 
 
Partitioning over the space of Z, 

µ = E(X) = EZ[E(X | Z)] = ∑ =
z

zpzZXE )()|(  

Know: E(X | Z = z) components 
Don’t know: p(z) components, so simulate just Z to estimate them 

 
Procedure:  Simulate to observe a value z for Z, then compute E(X | Z = z) to serve 

as a “basic observation” 
 
Single-server queue example:  Use simulation to generate values z for number in 

queue, then tally values of (z + 1)E(S) 
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Variance advantage: 
[ ] [ ]

)(Var
)|(Var)(Var)|(Var

X
ZXEXZXE ZZ

≤
−=

 

 
 
Trick:  Specify the “right” Z — want: 

 
Ease of generating Z (still have to simulate it) 
 
Ease of computing the known deterministic function E(X | Z = z), any z 
 

[ ])|(Var ZXEZ  to be large (see equation) — we never have to simulate X|Z so 
don’t care how big its variance is 

 
 
Issues: 

 
Clearly need to understand model, exploit special structure 
 
Often get as a by-product the phenomenon of artificially increasing the 

occurrence of rare but important events 
 
 
Examples:  (details in text) 

 
Branch points in computer-performance model, condition on branching decision 

and queue length at next station decided upon 
 
Estimate response time of fire trucks to serious fires, condition on location of 

fire trucks 
 


