CSE371 EXTRA CREDIT Challenge EXERCISES on SETS

SOLVE ALL PROBLEMS as PRACTICE; They might appear as extra credit problems on Quizzes and Tests

FINITE and INFINITE SETS

- **Definition 1** A set A is FINITE iff there is a natural number $n \in N$ and there is a 1-1 function f that maps the set $\{1, 2, ..., n\}$ onto A.
- **Definition 2** A set *A* is INFINITE iff it is NOT FINITE.
- ${\bf QUESTION}~1~$ Use the above definition to prove the following
- **FACT 1** A set A is INFINITE iff it contains a countably infinite subset, i.e. prove that one can define a 1-1 sequence $\{a_n\}_{n \in N}$ of some elements of A.
- **Definition 3** Two sets A, B have the same CARDINALITY iff there is a function f that maps A one-to-one onto the set B.

We denote it $|A| = |B| = \mathcal{M}$ and \mathcal{M} is called a cardinal number of sets A and B.

- **QUESTION 2** Use the above definition and FACT 1 from Question 1 to prove the following characterization of infinite sets.
- **Dedekind Theorem** A set A is INFINITE iff there is a set proper subset B of the set A such that |A| = |B|.

QUESTION 3 Use technique from DEDEKIND THEOREM to prove the following

Theorem For any infinite set A and its **finite** subset B,

$$|A| = |A - B|.$$

QUESTION 4 Use DEDEKIND THEOREM to prove that the set N of natural numbers is infinite.

QUESTION 5 Use DEDEKIND THEOREM to prove that the set R of real numbers is infinite.

QUESTION 6 Use technique from DEDEKIND THEOREM to prove that the interval [a, b], a < b of real numbers is infinite and that |[a, b]| = |(a, b)|.

CARDINALITIES OF SETS

Definition 4 For any sets A, B, let $|A| = \mathcal{N}$ and $|B| = \mathcal{M}$. We say $\mathcal{N} \leq \mathcal{M}$ iff |A| = |C| for some $C \subseteq B$. We say $\mathcal{N} < \mathcal{M}$ iff $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{N} \neq \mathcal{M}$. **QUESTION 7** Prove, using the above definitions 3 and 4 that for any cardinal numbers $\mathcal{M}, \mathcal{N}, \mathcal{K}$ the following formulas hold:

1.
$$\mathcal{N} \leq \mathcal{N}$$

2. If $\mathcal{N} \leq \mathcal{M}$ and $\mathcal{M} \leq \mathcal{K}$, then $\mathcal{N} \leq \mathcal{K}$.

QUESTION 8 Prove, for any sets A, B, C the following holds.

Fact 2

If
$$A \subseteq B \subseteq C$$
 and $|A| = |C|$, then $|A| = |B|$

To prove |A| = |B| you must use definition 3, i.e to construct a proper function. Use the construction from proofs of Fact 1 and Question 3.

QUESTION 9 Prove the following

Cantor- Berstein Theorem (1898) For any cardinal numbers \mathcal{M}, \mathcal{N}

$$\mathcal{N} \leq \mathcal{M} \text{ and } \mathcal{M} \leq \mathcal{N} \text{ then} \mathcal{N} = \mathcal{M}.$$

1. Prove first the case when the sets A, B are disjoint.

2. Generalize the construction for 1. to the not-disjoint case.

REMINDER

Definition 5 A set A is INFINITELY COUNTABLE iff A has the same cardinality as Natural numbers N, i.e. $|A| = |N| = \aleph_0$

Definition 6 A set A is COUNTABLE iff A is finite or infinitely countable.

Definition 7 A set A is UNCOUNTABLE iff A is NOT countable.