Predicate Logic Language

Symbols:
1. P, Q, R... *predicates symbols*, denote relations in “real life”, countably infinite set
2. x, y, z... *variables*, countably infinite set
3. c₁, c₂, ... *constants*, countably infinite set
4. f, g, h... *functional symbols*, may be empty, denote functions in “real life”
5. *Propositional connectives*:
 - ∨, ∧, ⇒, ¬, ⇔
6. *Symbols for quantifiers*
 - ∀x – universal quantifier reads: For all x...
 - ∃x – existential quantifier reads: There is x...
Formulas of Predicate Logic

We use symbols 1 - 6 to build formulas of predicate logic as follows

1. \(P(x), Q(x,f(y)), R(x) \ldots R(c1), Q(x, c3), Q(g(x,y), c), \ldots \)

 are called atomic formulas for any variables \(x, y, \ldots \), functions \(f, g \ldots \) and constants \(c, c1, c2, \ldots \)

2. All atomic formulas are formulas ;

3. If \(A, B \) are formulas then (like in propositional logic):
 \[(A \lor B), (A \land B), (A \Rightarrow B), (A \Leftrightarrow B), \neg A \]

 are formulas

4. \(\forall x A, \ \exists y A \) are formulas, for any variables \(x, y \)

5. The set \(F \) of all formulas is the smallest set that fulfills the conditions 1 - 4.
Examples

For example: let

\(P(y), Q(x,c), R(z), P_1(g(x, y), z) \) be atomic formulas, i.e.

\(P(x), Q(x,c), R(z), P_1(g(x, y), z) \in F \)

Then we form some other formulas out of them as follows:

\((P(y) \lor \neg Q(x, c)) \in F \)

It is a formula with two free variables \(x, y \).

\(\exists x (P(y) \lor \neg Q(x, c)) \in F \)

\(\forall y (P(y) \lor \neg Q(x, c)) \in F \)

\(\forall y \exists x (P(y) \lor \neg Q(x, c)) \in F \)

etc
Free and Bound Variables

Quantifiers **bound** variables within formulas

For example: A is a formula:

\[\exists x \ (P(x) \Rightarrow \neg Q(x, y)) \]

all the x’s in A are **bounded** by \(\exists x \)

y is a **free variable** in A that can be **bounded** by a quantifier, for example

\[\forall y \ \exists x \ (P(x) \Rightarrow \neg Q(x, y)) \]

y got **bounded** and there are **no free** variables in A now

A **formula without free variables** is called a **sentence**
Logic and Mathematical Formulas

We often use logic symbols while writing mathematical statements in a more symbolic way.

Example of a Mathematical Statement:

\[\forall x \in \mathbb{N} \ (x > 0 \land \exists y \in \mathbb{N} \ (y = 1)) \]

1. Quantifier \(\forall x \in \mathbb{N} \) is a quantifier with restricted domain.

2. Logic uses only \(\forall x, \exists y \) symbols.

3. \(x > 0 \) and \(y = 1 \) are mathematical statements about “real relation” >.

4. Logic uses symbols \(P, Q, R \ldots \) for example \(R(y, c_1) \) for \(y = 1 \) and \(P(x, c_2) \) for \(x > 0 \) where \(c_1 \) and \(c_2 \) are constants representing numbers 1 and 0, respectively.
Translation of Mathematical Statements to Logic Formulas

Consider a Mathematical Statement written with logical symbols

\[\forall x \in \mathbb{N} (x > 0 \land \exists y \in \mathbb{N} (y = 1)) \]

- \(x \in \mathbb{N} \) – we translate it as one argument predicate \(Q(x) \)
- \(x > 0 \) – we translate as \(P(x, c_1) \), and \(y = 1 \) – as \(R(y, c_2) \) and get

\[\forall Q(x) (P(x, c_1) \land \exists Q(y) R(y, c_2)) \]

↑ Logic formula with restricted domain quantifiers

But this is not yet a proper formula since we cannot have quantifiers \(\forall Q(x), \exists Q(y) \) in LOGIC, but only quantifiers \(\forall x, \exists x \)

\(\forall Q(x), \exists Q(y) \) are called quantifiers with restricted domain
We need to “get rid” of quantifiers with restricted domain i.e. to translate them into logic quantifiers: \(\forall x, \exists y \)

\[\exists x \in \mathbb{N}, \exists y \in \mathbb{N} \] are restricted quantifiers

\(\uparrow \) certain predicate \(P(x) \)

General: restricted domain quantifiers are:

\[\forall P(x), \exists Q(x) \]
Restricted Domain Existential Quantifiers

Translation for existential quantifier

\[\exists P(x) \ Q(x) \equiv \exists x (P(x) \land Q(x)) \]

↑ restricted \hspace{1cm} ↑ logic, not restricted

Example (mathematical formulas):
- \[\exists \ x \neq 1 \ (x>0 \Rightarrow x+y>5) \] - restricted
- \[\exists x ((x\neq 1) \land (x>0 \Rightarrow x+y>5)) \] - not restricted

↑ \(P(x, y, c) \)

English statement:
Some students are good.

Logic Translation (restricted domain):

\[\exists S(x) \ G(x) \]

Predicates are:
- \(S(x) \) – x is a student
- \(G(x) \) – x is good

TRANSLATION:

\[\exists x (S(X) \land G(x)) \]
Restricted Quantifiers and Logic Quantifiers

Translation for universal quantifier

Restricted Logic (non-restricted)
\[\forall_{P(x)} Q(x) \equiv \forall x (P(x) \Rightarrow Q(x)) \]

Example (mathematical statement)
\[\forall x \in \mathbb{N} (x = 1 \lor x < 0) \] restricted domain
\[\equiv \forall x (x \in \mathbb{N} \Rightarrow (x = 1 \lor x < 0)) \] – non-restricted
Translation of Mathematic statements to Logic formulas

Mathematical statement:
\[\forall x \ (x \in N \Rightarrow (x = 1 \lor x < 0)) \]

- \(x \in N \) - translates to \(N(x) \)
- \(x < 0 \) - translates to \(P(x, c_1) \)
- \(x < y \) - \(<\) is a 2 argument relation \(\equiv \) two argument predicate \(P(x, y) \), \(x, y \) are variables
- \(0 \) - is a constant - denote by \(c_1 \)
- \(x = 1 \) - \(=\) is a two argument predicate \(Q(x, y) \)
- \(x = 1 \) - 1 is constant denoted by \(c_2 \)

\(x = 1 \) translates to \(Q(x, c_2) \)

Corresponding logic formula:
\[\forall x \ (N(x) \Rightarrow (Q(x, c_2) \lor P(x, c_1))) \]
Remark

Mathematical statement: $x + y = 5$
We re-write it as

$= (+ (x, y), 5)$

Given $x = 2, x = 1$, we get $+(2,1) = 3$ and the statement:

$= (3,5)$ is FALSE (F)

Predicates always returns F or T

We really need also function symbols (like +, etc..) to translate mathematical statements to logic, even if we could use only relations as functions are special relations

This is why in formal definition of the predicate language we often we have 2 sets of symbols

1. Predicates symbols which can be true or false in proper domains
2. Functions symbols (formally called terms)
Translations to Logic

Rules:
1. Identify the domain: always a set $X \neq \emptyset$
2. Identify predicates (simple: atomic)
3. Identify functions (if needed)
4. Identify the connectives $\lor, \land, \Rightarrow, \neg, \leftrightarrow$
5. Identify the quantifiers $\forall x, \exists x$

 Write a formula using only symbols for $2, 3, 4$
6. Use restricted domain quantifier translation rules, where needed
Transl.:
For every bird there are some birds that are white

Predicates:
- \(B(x) \) – \(x \) is a bird
- \(W(x) \) – \(x \) is white

Restricted:
- \(\forall B(x) \exists B(x) W(x) \)

Logic
- \(\forall x (B(x) \implies \exists x (B(x) \land W(x))) \)

Re-name variables
- \(\forall x (B(x) \implies \exists y (B(y) \land W(y))) \)

By Laws of Quantifiers - we will study the laws later, we can re-write it as
- \(\forall x \exists y (B(x) \implies (B(y) \land W(y))) \)
Example

For every student there is a student that is an elephant

$B(x)$ - x is a student

$W(x) - x$ is an elephant

$\forall B(x) \exists B(x) W(x)$ - restricted

$\forall B(x) \exists x (B(x) \land W(x))$

$\forall x (B(x) \Rightarrow \exists x (B(x) \land W(x)))$ (logic formula)
Translational Example

Translate: Some patients like all doctors

Predicates:

- \(P(x) \) – \(x \) is a patient
- \(D(x) \) – \(x \) is a doctor
- \(L(x,y) \) – \(x \) likes \(y \)

\[\exists x \forall y (P(x) \land (D(y) \implies L(x,y))) \]

There is a patient \((x)\), such that for all doctors \((y)\), \(x \) likes \(y \)

(by law of quantifiers to be studied later we can “pull out \(\forall y \)”)

\[\exists x \forall y (P(x) \land (D(y) \implies L(x,y))) \]
Translating Exercise

• Here is a mathematical statement S:
• *For all natural numbers n the following hold:* $n < 0$, then there is a natural number m, such that $m + n < 0$

1. Re-write S as a “formula” SF that only uses mathematical and logical symbols
2. Translate your SF to a correct logic formula LF
3. Argue whether the statement S is true or false
4. Give an interpretation of the logic formula LF (in a non-empty set X) under which LF is false