CHAPTER 3

PROPOSITIONAL LANGUAGES

1 Introduction

We define here a general notion of a propositional language. We show how to
obtain, as specific cases, various languages for propositional classical logic and
some non-classical logics.

We assume that any propositional language contains a countably infinite set
of variables VAR, which elements will be denoted by a, b, ¢, .... with indices if
necessary.

All propositional languages share the general way their sets of formulas are
formed.

What distinguishes one propositional language from the other is the choice of
its set of propositional connectives.

We adopt a notation
Lcon,

where CON stands for the set of connectives for a propositional language with
the set CON of logical connectives.

For example, the language
Li-

denotes a propositional language with only one connective —. The language
Li-=)
denotes that the language has only two connectives = and = adopted as propo-

sitional connectives.

Remember: any formal language deals with symbols only and is also called a
symbolic language.

Theoretically one can use any symbols to denote propositional connectives. But
there are some preferences, as those connectives do have intuitive meaning. The
formal meaning, i.e. the assignment logical values to the formulas is going to be
defined separately. It is formally called and a semantics for the given language

One language can have many semantics. Different logics can share the same
language.



For example the language
Li-nu=)

is used here as a propositional language of classical, intuitionistic logic, some
many valued logics, and is extended to the language of modal logics.

It is possible for several languages to share the same semantics.

The classical propositional logic is the best example of such situation. It is
due to functional dependency of classical logical connectives, discussed in the
previous chapter. We will show formally later that the languages:

L=y, Lionys Li-oy Li-nu=y Li-nu,=,o)

and even two languages with only one binary propositional connectives, denoted
usually by T and |, respectively, i.e languages

Ly Ly1y

all share the same semantics characteristic for classical propositional logic.

The connectives have well established common names, even if their semantic
can differ.

We use names, as in Chapter 2, negation, conjunction, disjunction and im-
plication for —,N,U, =, respectively. The connective 1 is called alternative
negation and A | B reads: not both A and B. The connective | is called joint
negation and A | B reads: neither A nor B.

Other most common propositional connectives are probably modal connectives
of possibility and necessity .

Standard modal symbols are [ for necessity and ¢ for possibility.

We will also use symbols C and I for modal connectives of possibility and
necessity, respectively.

A formula CA, or 0A reads: it is possible that A or A is possible and a
formula TA, or (A reads: it is necessary that A or A is necessary.

The motivation for notation C and I arises from topological interpretation of
modal S4 and S5 logics. C becomes equivalent to a set closure operation, hence
CA means a closure of the set A, and I becomes equivalent toa set interior
operation and IA denotes an interior of the set A.

The symbols ¢, C and [0, I are not the only symbols used for modal connectives.
Other notations include IV for necessity and P for possibility. There are also a
variety of modal logics created by computer scientists all with their own set of
symbols and motivations for their use. The modal logic language extends the
classical logic, i.e. we adopt the language

Li-crup Limnu=1 0 L{00,-n0,=1}-



The knowledge logics use together with classical connectives a new knowledge
connective denoted by K. The formula K A reads: it is known that A or A
1s known. The language of a knowledge logic is denoted by

Lk, up Li-nu,=)-

The autoepistemic logics use, for example believe connectives, often denoted by
B. The formula BA reads: it is believed that A . They also extend the classical
logic and hence their language is

E{ﬁ, B, u}aﬁ{ﬁ,m,u,é}

Temporal logics use, together with classical propositional connectives, the tem-
poral connectives . For example one can use connectives (operators, as they
are often called) F, P,G, and H to denote the following intuitive readings. F'A
reads A is true at some future time, PA reads A was true at some past time,
GA reads A will be true at all future times, and HA reads A has always been
true in the past. In order to take account of this variation of truth-values over
time, some formal semantics were created, and many more will be created.

It is possible to create connectives with more then one or two arguments, but
we allow here only one and two argument connectives, as logics which will be
discussed here use only those two kind of connectives.

2 Formal Propositional Languages

We adopt the following definition, common to all propositional languages con-
sidered in our propositional logics investigations.

Definition 2.1 By a propositional language we understand a pair
L=(AF),

where A, F are called the alphabet and a set of formulas.
The alphabet A, and the set of formulas F are defined as follows.

Definition 2.2 Alphabet is a set

A=VARUCON U PAR,

where VAR, CON, PAR are all disjoint sets and VAR, CON are non-empty
sets.



VAR is a countably infinite set, called a set of propositional variables;
we denote elements of VAR by a,b,c, ... ete, (with indices if necessary);
the set CON # () is a finite set of propositional connectives;

PAR # () is a set of auxiliary symbols and we assume that PAR contains
two elements (,) called parentheses, i.e.

PAR =A{(,)}.

The set PAR may be empty, for example of the case of Polish notation, but we
assume here that it contains two parenthesis to make the reading of formulas
more natural and uniform.

We assume that CON a non empty set, what means that there is a logical
connective. We specify the set CON for specific cases (specific logics).

We denote the language £ (definition 2.1) with the set of connectives CON by

Lcon-

It is possible to consider languages with connectives which have more then one
or two arguments, nevertheless we restrict ourselves to languages with one or
two argument connectives only.

Definition 2.3 We assume that the set CON of propositional connectives of
the language (definition 2.1)
Lcon

18 non-empty and contains unary and binary connectives, i.e.
CON =C1UCy

where

Cy is a finite set (possibly empty) of unary connectives ,

Cy is a finite set (possibly empty) of binary connectives of the language L.

The set F of all formulas of a propositional language Loy is built recursively
from the signs of the alphabet A, i.e.
F C A"

where A* is the set of all finite sequences (strings) form from elements of A.



Definition 2.4 The set F of all formulas of the language Loon is
the smallest set built from the signs of the alphabet A, i.e. F C A*,
such that the following conditions hold:

(1) VAR C F (atomic formulas),
(2) ifAeF, v € Cyievy isan one argument connective, then \JA € F,

(3) if A,BeF, o€ Cyi.coisatwo argument connective, then
(AoB) e F.

Definition 2.5 The elements of the set VAR C F are called atomic formu-
las.

The set F is often called also a set of all well formed formulas (wit) of the
language.

Example 1
Consider

CON =0y = {~}.

It means that the language £ contains only one, one -argument connective —. If
we call =, a negation, then we can say that the formulas of this languages are
propositional variables or a multiple negation s of of a propositional variable. I.
e. forany a € VAR, a € F, ma € F, =—a € F, -——a € F, ... etc.

Observe that the strings (—a), =, =(—a), =(a) are not well formed formulas of
our propositional language. Le. (ma) € F,~ & F,—(—a) € F and —(a) &€ F.

Example 2
Consider now
CON ={-}Uu{=},

where = € (7 and =€ (5. By definition 2.4 initial recursive step we get for
any a € VAR, a € F. By the recursive step and its repetition we get —a € F,
——a € F, -—=—a € F, ... etc., i.e. all formulas from the previous example are
in our new F. But also (a = a), (a = b),~(a = b),(—a = b),~((a = a) =
—(a = b)).... etc. are all in F and infinitely many others.

Observe that (—(a = b))),a = b, (a =) are not in F.

Example 3

Take C; = {-,P,N}, C2 = {=} and CON = C; U (5. If we understand
P, N as a possibility and necessity connectives, the obtained language is
called a modal language. The set of formulas F contains all formulas from the
previous example , but also the expressions of the form: Na, —~Pa, P-a, (N-b =
Pa),-P-a,((N-b= Pa) = b), etc.



As we can see from above examples the propositional language is different for
different sets of propositional connectives. We will see later that that different
sets of connectives may (but may also not) define different propositional logics.

When the set of connectives for a given logic is fixed we use the plain £ instead
of the notation Lcon-

Theoretically the choice of appropriate symbols for logical connectives depends
really on a personal preferences of the authors (creators) of different logics, and
one can find quite a variety of symbols in the literature, some of them discussed
in the introduction.

We will introduce now the formal definitions of a main connective, a sub-
formula and degree of a given formula.
Definition 2.6 (Main Connective) Given a language Loon .

For any sy € C1, o € Cy,

 is called a main connective of VA € F and

o is a main connective of (Bo(C) € F.
Observe that it follows directly from the definition of the set of formulas that
for any formula C € F, exactly one of the following holds:

1. C is atomic,

2. there is a unique formula A and a unique unary connective 7 € Cy, such
that C' is of the form A,

3. there are unique formulas A and B and a unique binary connective o € Cy,
such that C is (Ao B).

We have hence proved the following lemma.

Lemma 2.1 For any formula C € F, C is atomic or has a unique main con-
nective.

Example 4

1. The main connective of (a = —~Nb) is =

2. The main connective of N(a = —b) is N.



3. The main connective of =(a = —b) is —

4. The main connective of (ma U —(a = b)) is U.

Definition 2.7 We define a notion of direct a direct sub-formula as follows:

1. Atomic formulas have no direct sub-formulas.

2. A is a direct sub-formula of a formula 7 A, where 7 is any unary connec-
tive.

3. A, B are direct sub-formulas of a formula (A o B) where o is any binary
connective.

Directly from the definition 2.7 we get the following.

Lemma 2.2 For any formula C, C is atomic or has exactly one or two direct
sub-formulas depending on its main connective being unary or binary, respec-
tively.

Example 5
The formula
(maU—(a=0b))

has exactly —a and —(a = b) as direct sub-formulas.

Definition 2.8 We define a notion of a sub-formula of a given formula in two
steps:

For any formulas A and B, A is a proper sub-formula of B if there is
sequence of formulas, beginning with A, ending with B, and in which each
term is a direct sub-formula of the next.

A sub-formula of a given formula A is any proper sub-formula of A, or A
itself.
Example 6

The formula (—a U —(a = b)) has —a and —(a = b) as direct sub-formula.

The formulas —a and —(a = b) have a and (a = b) as their direct sub-formulas,
respectively.

The formulas —a, =(a = b), a and (a = b) are all proper sub-formulas of the
formula (—a U —(a = b)) itself.



Formulas (atomic formulas) a and b are direct sub-formulas of (a = b).
Atomic formula b is a proper sub-formula of (—a U =(a = b)).

The set of all sub-formulas of
(maU=(a=1))

consists of (maU=(a = b)), -a, 7(a = b), (a = b), a and b.

Definition 2.9 (Degree of a formula) By a degree of a formula we mean
the number of occurrences of logical connectives in the formula.

Example 7

The degree of (—a U —(a = b)) is 4.
The degree of —~(a = b)) is 2.
The degree of —a is 1.

The degree of a is 0.

Note that the degree of any proper sub-formula of A must be one less than the
degree of A. This is the central fact upon mathematical induction arguments
are based.

Proofs of properties formulas are usually carried by mathematical induction on
their degrees.

2.1 Languages with Propositional Constants

A propositional language £ = (A, F) is called a language with propositional
constants, when we distinguish certain constants, like symbol of truth (T) or
falsehood (F), or other symbols as elements of the alphabet. The propositional
constants are zero-argument connectives. In this case the set CON of logical
connectives contains a a finite (possibly empty) set of zero argument con-
nectives (), called propositional constants, i.e.

CON = CyuCy UCs.

The definition of the set F of all formulas of the language £ contains now an
additional recursive step and is as follows.



The set F of all formulas of the language Loon is
the smallest set built from the signs of the alphabet A, i.e. F C A*,
such that the following conditions hold:

(1) VAR C F (atomic formulas),
(2) Cy C F (atomic formulas),
(3) if Ae F, v € Cy i.e v/ is an one argument connective, then \yA € F,

(4) if A,B € F, o€ (Cyieoisatwo argument connective, then
(AoB) e F.

Example Let £ = Lyp -y, i.e. Co = {V}. Atomic formulas of £ are all
variables and the symbol 7. The language admits formulas that involve the
symbol T like T, =T, (T'Na), (—aN=T),~(bNT), etc... We might interpret the
symbol T" as a symbol of truth (statement that is always true).

2.2 Exercises and Homework Problems

This set of problems deals with the formal description of propositional languages.
We investigate the syntactic correctness of formulas of a given language. Here
is a sample problem.

Exercise 1
Given a language £ = L, ¢ u,n,=} and a set S of formulas:

S={C-a= (aUD),(C(—a= (aUb))),C—(a= (aUD))}

Determine which of the formulas from S is, and which is not well formed
formulas of L.

If a formula is correct, determine its main connective. If it is not correct, write
the corrected formula and then determine its main connective.

If a formula is correct, write what it says. If it is not correct, write the corrected
formula and then write what it says.

Solution

1. The formula C—a = (a Ub) is not a well formed formula.

The correct formula is
(C—a = (aUb).)



The main connective is =.
The correct formula says: If negation of a is possible, then we have a or b .

Another correct formula is

C(—a = (aUD)).

The main connective is C.
The correct formula says: It is possible that not a implies a or b .
2. The formula (C(—a = (aUb))) is not a well formed formula.
The correct formula is
C(—a = (aUD)).
The main connective is C.
The formula C(—a = (a Ub)) says: It is possible that not a implies a or b .
3. The formula C—(a = (aUb)) is a correct formula.
The main connective is C.
The formula says: the negation of the fact that a implies a or b is possible.

Exercise 2
Given a set S of formulas:

S ={((a = —b) = —a),0(-0a = —a)}.

Define a formal language £ to which to which all formulas in S belong, i.e. a
language determined by the set S.

Solution

Any propositional language £ is determined by its set of connectives. All con-
nectives appearing in the formulas of the set S are: =, b, [, and . Hence the
required language is Li— —y 0.03-

Exercise 3
Given formulas:

O((aU=a)Nb) and —(a = (b =)).

1. Determine their degree,
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2. Write down all their sub-formulas.
Solution
1. The degree of ¢((a U —a) Nb) is 4, the degree of =(a = (b =)) is 3.

2. O((aU—-a)Nd), ((aU=-a)Nb), (aU-a),a,b,a are all sub-formulas of ¢((aU
—a) N'b). a,b are atomic sub-formulas, and {((a U —a) N'b) is not a proper
sub-formula.

—(a = (b= ¢)(a= (b= c), (b= c)a,b,c are all sub-formulas of —(a =
(b = ¢)), a,b,c are atomic sub-formulas, and —(a = (b = ¢)) is not a proper
sub-formula.

Homework Problems
Problem 1

Consider the following formulas.

L ((a1b)1(atb)1a)

2. (a = —b) = —a

3. 0la= —-b)Ua, O(a= (-bUa), Ya=-bUa
4. (O0-0a = —a), O(=0a = —a), O-0(a = —a)
5. ((aU—-K=a)), KaK (b= —a), 7K (aU —a)

6. (B(anb) = Ka), B((anb) = Ka)

7. G(a=b) = Ga= Gb),a= HFa, FFa = Fa

For all formulas listed above do the following.

(a) Determine which of the formulas is, and which is not a well formed formula.
Determine a formal language of £ to which the formula or set of formulas
belong.

(b) If a formula is correct, write what its main connective is. If it is not
correct, write the corrected formula and then write its main connective.
If there is more then one way to correct the formula, write all possible
correct formulas.

(c) If a formula is correct, write what it says. If it is not correct, write the
corrected formula and then write what it says.
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Problem 2
For each of the formulas listed below, determine its degree and write down its
all proper non-atomic sub-formulas.

1. (a= ((-b= (maUc)) = —a))

2. O((an=a) = (aNb))

3. O0-0(a = —a)

4. O(0a = (-bU Qa))

5. (m(anb)Ua)
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