
1 Completeness Theorem for Classical Predi-
cate Logic

The relationship between the first order models defined in terms of structures
M = [M, I] and valuations s : V AR −→ M and propositional models defined
in terms of truth assignments v : P −→ {T, F} is established by the following
lemma.

Lemma 1.1 (Predicate and Propositional Models)

Let M = [M, I] be a structure for the language L and let s : V AR −→ M a
valuation in M. There is a truth assignments v : P −→ {T, F} such that for
all formulas A of L,

(M, s) |= A if and only if v∗(A) = T.

In particular, for any set S of sentences of L,

if M |= S then S is consistent in sense of propositional logic.

Proof For any prime formula A ∈ P we define

v(A) =
{

T if (M, s) |= A
F otherwise.

Since every formula in L is either prime or is built up from prime formulas by
means of propositional connectives, the conclusion is obvious.

Observe, that the converse of the lemma is far from true. Consider a set

S = {∀x(A(x) ⇒ B(x)),∀xA(x),∃x¬B(x)}.

All formulas of S are different prime formulas, S is hence consistent in the sense
of propositional logic and obviously has no (predicate) model.

The language L is a predicate language with equality. We adopt a following set
of axioms.

Equality Axioms For any free variable or constant of L, i.e for any u,w, ui, wi ∈
(V AR ∪C),

E1 u = u,

E2 (u = w ⇒ w = u),
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E3 ((u1 = u2 ∩ u2 = u3) ⇒ u1 = u3),

E4 ((u1 = w1 ∩ ... ∩ un = wn) ⇒ (R(u1, ..., un) ⇒ R(w1, ..., wn))),

E5 ((u1 = w1 ∩ ... ∩ un = wn) ⇒ (t(u1, ..., un) ⇒ t(w1, ..., wn))),

where R ∈ bfP and t ∈ T , i.e. R is an arbitrary n-ary relation symbol of L and
t is an arbitrary n-ary term of L.

Obviously, all equality axioms are first-ordertautologies, or are valid formulas
of L, i.e. for all M = [M, I] and all s : V AR −→ M , and for all A ∈
{E1, E2, E3, E4, E5.E6}, (M, s) |= A.

This is why we still call logic with equality axioms added a logic.

Now we are going to define notions that is fundamental to the Henkin’s technique
for reducing first-order logic to propositional logic. The first one is that of
witnessing expansion of the language L.

Witnessing expansion L(C) of L We construct an expansion of our lan-
guage L by adding a set C of new constants to it, i.e. we define a new
language L(C)

L(C) = L(P,F,(C ∪ C))

which is usually denoted shortly as

L(C) = L ∪ C.

Definition of C We define the set C of new constants by constructing an
infinite sequence

C0, C1, ..., Cn, .... (1)

of sets of constants together with an infinite sequence

L0,L1, ...,Ln, .... (2)

of languages, such that

Ln = L ∪ Cn, C =
⋃

n∈N
Cn

and
L(C) = L ∪ C.

We define sequences ( 1), ( 2) as follows. Let

C0 = ∅, L0 = L ∪ C0 = L.
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We denote by
A[x]

the fact that the formula A has exactly one free variable and for each such a
formula we introduce a distinct new constant denoted by

cA[x].

We define
C1 = {cA[x] : A[x] ∈ L0}, L1 = L ∪ C1.

Assume that we have defined Cn and Ln. We introduce a distinct new constant
cA[x] for each formula A[x] of Ln which is not already a formula of Ln−1 (i.e.,
if some constant from Cn appears in A[x]). We write it informally as A[x] ∈
(Ln − Ln−1).

We define

Cn+1 = Cn ∪ {cA[x] : A[x] ∈ (Ln − Ln−1)},
Ln+1 = L ∪ Cn+1.

Witnessing constant For any formula A, a constant cA[x] as defined above
is called a witnessing constant.

Henkin Axioms The following sentences

H1 (∃xA(x) ⇒ A(cA[x])),

H2 (A(c¬A[x]) ⇒ ∀xA(x))

are called Henkin axioms.

The informal idea behind the Henkin axioms is the following.

The axiom H1 says:
If ∃xA(x) is true in a structure, choose an element a satisfying A(x) and give
it a new name cA[x].

The axiom H2 says:
If ∀xA(x) is false, choose a counterexample b and call it by a new name c¬A[x].

Quantifier axioms The following sentences

Q1 (∀xA(x) ⇒ A(t)), t is a closed term of L(C);

Q2 (A(t) ⇒ ∃xA(x)), t is a closed term of L(C)

are called quantifier axioms. They obviously are first-order tautologies.
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Henkin set Any set of sentences of L(C) which are either Henkin axioms
H1, H2 or quantifier axioms Q1, Q2 is called Henkin set and denoted by

SHenkin.

The set SHenkin is obviously not true in every L(C)-structure, but we are going
to show that every L -structute can be turned into an L(C)-structure which is
model of SHenkin. Before we do so we need to introduce two new notions.

Reduct and Expension Given two languages L and l′ such that L ⊂ L′ .
Let M′

= [M, I
′
] be a structure for L′ . The structure

M = [M, I
′ | L]

is called the reduct ofM′
to the language L andM′

is called the expension
of M to the language L′ .

Thus the reduct and the expension M′
and M are the same except that M′

assigns meanings to the symbols in (L − L′).

Lemma 1.2 Let M = [M, I] be any structure for the language L and let
L(C) be the witnessing expansion of L. There is an extention M′

= [M, I
′
] of

M = [M, I] such that M′
is a model of the set SHenkin.

Proof In order to define the expansion of M to M′
we have to define the

interpretation I
′

for the symbols of the language L(C) = L ∪ C, such that
I
′ | L = I. This means that we have to define cI′ for all c ∈ C. By the

definition, cI′ ∈ M , so this also means that we have to assign the elements of
M to all constants c ∈ C in such a way that the resulting expansion is a model
for all sentences from SHenkin.

The quantifier axioms Q1, Q2 are first order tautologies so they are going to
be true regardless, so we have to worry only about the Henkin axioms H1,H2.
Observe now that if the lemma holds for the Henkin axioms H1, then it must
hold for the axioms H2. Namely, let’s consider the axiom H2:

(A(c¬A[x]) ⇒ ∀xA(x)).

Assume that A(c¬A[x]) is true in the expansion M′
, ie. that M′ |= A(c¬A[x])

and thatM′ 6|= ∀xA(x). This means thatM′ |= ¬∀xA(x) and by the de Morgan
Laws, M′ |= ∃x¬A(x). But we have assumed that M′

is a model for H1. In
particular M′ |= (∃x¬A(x) ⇒ ¬A(c¬A[x])), and hence M′ |= ¬A(c¬A[x]) and
this contradicts the assumption that M′ |= A(c¬A[x]). Thus if M′

is a model
for all axioms of the type H1, it is also a model for all axioms of the type H2.
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We define cI′ for all c ∈ C =
⋃

Cn by induction on n. Let n = 1 and cA[x] ∈ C1.
By definition, C1 = {cA[x] : A[x] ∈ L}. In this case we have that ∃xA(x) ∈ L
and hence the notion M |= ∃xA(x) is well defined, as M = [M, I] is the
structure for the language L. As we consider arbitrary structure M, there are
two posibilities: M |= ∃xA(x) or M 6|= ∃xA(x). We define cI′ , for all c ∈ C1 as
follows.

If M |= ∃xA(x), then (M, v′) |= A(x) for certain v′(x) = a ∈ M . We set
(cA[x]))I′ = a. If M 6|= ∃xA(x), we set (cA[x]))I′ arbitrarily. Obviously, M′

=
(M, I

′
) |= (∃xA(x) ⇒ A(cA[x])). But once c ∈ C1 are all interpreted in M′

=
(M, I

′
), then the notion M′ |= A is defined for all formulas A ∈ L ∪ C1. We

carry the inductive step in the exactly the same way as the one above.

Canonical structure Given a structure M = [M, I] for the language L.
The extention M′

= [M, I
′
] of M = [M, I] is called a canonical structure

for L(C) if all a ∈ M are denoted by some c ∈ C, i.e if

M = {cI′ : c ∈ C}.

Now we are ready to state and proof a lemma that provides the essential step
in the proof of the Completeness Theorem.

Lemma 1.3 (The reduction to propositional logic) Let L be a first order
language and let L(C) be a witnessing expansion of L. For any set S of sentences
of L the following conditions are equivalent.

(i) S has a model, i.e. there is a structure M = [M, I] for the language L
such that M |= A for all A ∈ S.

(ii) There is a canonical L(C) structure M′
= [M, I

′
] which is a model for

S, i.e. such that M′ |= A for all A ∈ S.

(iii) The set S ∪ SHenkin ∪ EQ is consistent in sense of propositional logic,
where EQ denotes the equality axioms E1− E5.

Proof The implication (ii) → (i) is immediate. The implication (i) → (iii)
follows from lemma 1.2. We have to prove only the implication (iii) → (ii).

Assume that the set S ∪ SHenkin ∪ EQ is consistent in sense of propositional
logic and let v be a truth assignment to the prime sentences of L(C), such that
v∗(A) = T for all A ∈ S ∪ SHenkin ∪ EQ. To prove the lemma, we construct a
canonical model M′

= [M, I
′
] such that, for all sentences A of L(C),

M′ |= A if and only if v∗(A) = T.
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v is a propositional model for the set SHenkin, so v∗ satisfies the following
conditions:

v∗(∃xA(x)) = T if and only if v∗(A(cA[x])) = T, (3)

v∗(∀xA(x)) = T if and only if v∗(A(t)) = T, (4)

for all closed terms t of L(C).

The conditions ( 3) and ( 4) allow us to construct the model M′
= [M, I

′
] out

of the constants in C in the following way.

TO BE DONE!

The Main Lemma provides not only a method of constructing models of theories
out of symbols, but also gives us immediate proofs of the Compactness Theorem
for the first order logic and Lowenheim-Skolem Theorem.

Theorem 1.1 (Compactness theorem for the first order logic)
Let S be any set of first order formulas. The set S has a model if and only if
any finite subset S0 of S has a model.

Proof Let S be a set of first order formulas such that every finite subset S0 of S
has a model. We need to show that S has a model. By the implication (iii) → (i)
of the Main Lemma 1.3 this is equivalent to proving that S ∪ SHenkin ∪ EQ is
consistent in the sense of propositional logic. By the Compactness Theorem ??
for propositional logic, it suffices to prove that for every finite subset S0 ⊂ S,
S0 ∪ SHenkin ∪ EQ is consistent, which follows from the hypothesis and the
implication (i) → (iii) of the Main Lemma 1.3.

Theorem 1.2 (Löwenheim-Skolem Theorem)
Let κ be an infinite cardinal and let S be a set of at most κ formulas of the first
order language. If the set S has a model, then there is a model M = [M, I] of
S such that cardM ≤ κ.

Proof Let L be a first order language with the alphabet A such that
card(A) ≤ κ. Obviously, card(F) ≤ κ. By the definition of the witnessing
expansion L(C) of L, C =

⋃
nCn and for each n, card(Cn) ≤ κ. So also

cardC ≤ κ. Thus any canonical structure for L(C) has ≤ κ elements. By the
implication (i) → (ii) of the Main Lemma 1.3 there is a model of S (canonical
structure) with ≤ κ elements.
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