CHAPTER 1

INTRODUCTION

1 Mathematical Paradoxes

Until recently, till the end of the 19th century, mathematical theories used to be
built in an intuitive or axiomatic way. In other words, they were based either
intuitive ideas concerning basic notions of the theory - ideas taken from the
reality- or on the properties of these notions expressed in systems of axioms.
The historical development of mathematics has shown that it is not sufficient
to base theories on an intuitive understanding of their notions only. This fact
became especially obvious in set theory. The basic concept of this theory, set, is
certainly taken from reality, for there we come across many examples of various
sets, all of which are finite. But in mathematics it is also necessary to consider
infinite sets, such as the set of all integers, the set of all rational numbers, the
set of all segments, the set of all triangles.

By a set, we mean intuitively, any collection of objects- for example, the set of
all even integers or the set of all students in a class. The objects that make up a
set are called its members (elements). Sets may themselves be members of sets
for example, the set of all sets of integers has sets as its members. Most sets are
not members of themselves; the set of all students, for example, is not a member
of itself, because the set of all students is not a student. However, there may
be sets that do belong to themselves - for example, the set of all sets. However,
a simple reasoning indicates that it is necessary to impose some limitations on
the concept of a set.

Russell, 1902 Consider the set A of all those sets X such that X is not a
member of X. Clearly, by definition, A is a member of A if and only if
A is not a member of A. So, if A is a member of A, the A is also not a
member of A; and if A is not a member of A, then A is a member of A.
In any case, A is a member of A and A is not a member of A.

This paradox arises because the concept of set was not precisely enough defined,
and was too liberally interpreted. Russell noted the self-reference present in his
paradox (and other paradoxes, two of them stated below) and suggested that
every object must have a definite non-negative integer as its type. Then an
expression z is a member of the set y is meaningful if and only if the type of
y is one greater than the type of . So, according to the theory of types, it is
meaningless to say that a set belongs to itself, there can not be such set A, as
stated in the Russell paradox.



The paradoxes concerning the notion of a set are called logical paradozes (anti-
nomies). Two of the most known (besides the Russell’s) logical paradozes are
Cantor and Burali-Forti antinomies. Both were stated at the end of 19th cen-
tury. The Cantor paradox involves the theory of cardinal numbers, Burali-Forti
paradox is the analogue to Cantor’s in the theory of ordinal numbers. They will
make real sense only to those already familiar with both of the theories, but we
will state them here because they do have an intuitive meaning and had very
important consequences.

The cardinal number cardX of a setX intuitively corresponds, in a case of finite
sets, to a number of elements of the set X. cardX is formally defined to be
the set of all sets Y that are equinumerous with X ( i.e., for which there a
one-to-one correspondence between X and Y). We define cardX < cardY to
mean that X is equinumerous with a subset of Y'; by cardX < cardY we mean
cardX < cardY and cardX # cardY. Cantor proved that if P(X) is the set
of all subsets of X, then cardX < cardP(X). The cardinal numbers behave
similarly to natural numbers in many cases, in particular Schréder- Berstein
proved that if cardX < cardY and cardY < cardX, then cardX = cardY .

The ordinal numbers are the numbers assigned to sets in a similar way as cardinal
numbers but they deal with ordered sets.

Cantor, 1899 Let C be the universal set - that is, the set of all sets. Now, P(C)
is a subset of C, so it follows easily that cardP(C) < cardC. On the other
hand, by Cantor theorem, cardC < cardP(C), so also cardC < cardP(C)
and by Schroder- Berstein theorem we have that cardP(C) = cardC, what
contradicts cardC < cardP(C).

Burali-Forti, 1897 Given any ordinal number, there is a still larger ordinal
number. But the ordinal number determined by the set of all ordinal
numbers is the largest ordinal number.

The approach of eliminating logical paradoxes, known as the theory of types was
systematized and developed by Whitehead and Russell in years 1910 - 1913. It
is successful, but difficult in practice and has certain other drawbacks as well.
A different criticism of the logical paradoxes is aimed at their assumption that
the notion of a set is defined in such a way that, for every property P(z),
there exists a corresponding set of all objects x that satisfy P(z). If we reject
this assumption, then the logical paradoxes are no longer derivable. Russell’s
Paradox then simply proves that there is no set A of all sets that do not belong
to themselves; the paradoxes of Cantor and Burali-Forti show that there is no
universal set and no set that contains all ordinal numbers.

It became obvious that the paradoxes described above, as well as many similar
ones occurring in intuitive set theory cannot be avoided by referring to intuition
only. The solution looked for was to characterize the intuitive concept of set by



a suitable set of axioms. If we do so, we obtain an aziomatic set theory without
such antinomies. The problem arises what set of axioms should be chosen in
order to obtain a sufficiently rich theory of sets. The first such axiomatic set
theory was invented by Zermello in 1908. In chapter .. we shall present an
axiomatic theory of sets that is descendant of Zermello’ system. The theory
based on that system is, in practice, sufficient to include all actual mathematical
theories!

A more radical interpretation of the paradoxes has been advocated by Brower
and his intuitionist school. They refuse to accept the universality of certain
basic logical laws, such as the law of excluded middle: A or not A. Such a law,
they claim, is true for finite sets, but it is invalid to extend it to all sets. It
means that the intuitionists’ view of the concept of infinite set differs from that
of most mathematicians. Intuitionists reject the idea of infinite set as a closed
whole. They look upon an infinite set as something which is constantly in a
state of formation. It means that, for example, the set of all positive integers
is not looked upon as a closed whole. It is infinite in a sense that to any given
finite set of positive integers it is always possible to add one more positive
integer. The notion of the set of all subsets of the set of all positive integers is
not regarded meaningful. Obviously, intuitionists’ view-point on the meaning
of the basic logical and set-theoretical concepts used in mathematics is different
from that of most mathematicians in their research. The basic difference lies
in the interpretation of the word ezists. For example, let P(n) be a statement
in the arithmetic of positive integers. For the mathematician the sentence the
exists m, such that P(n) is true if it can be deduced (proved) from the axioms
of arithmetic by means of classical logic. If the mathematician proves it, this
does not mean that he is able to indicate a method of construction of a positive
integer n such that P(n) holds. On the contrary, for the intuitionist the sentence
the exists n, such that P(n) is true only if he is able to construct a number n
such that P(n) is true. In the intuitionists’ universe we are justified in asserting
the existence of an object having a certain property only if we know an effective
method for constructing or finding such an object. The paradoxes are, in this
case, not derivable (or even meaningful), but so are many theorems of everyday
mathematics, and for this reason, intuitionism has found few converts among
mathematicians. But, because of its constructive flavor, it has found some
applications in computer science and this is the reason to discuss some of it
here. An exact exposition of the basic ideas of intuitionism is outside the range
of this book, but we will study intuitionists logic, which is a sort of reflection of
intuitionists ideas formulated in formalized deductive system.

As we can see, the axiomatic method was the first step leading to greater pre-
cision in the construction of mathematical theories. In intuitive mathematical
theories the borderline between that which is obvious and that which requires
proof is not exact. In axiomatic theories a system of primitive notions is as-
sumed which are characterized by a set of axioms. Other notions can be defined
by means of the primitive notions. All statements which are consequences of



the axioms are called theorems of the theory. All properties of any notion of
the theory which are not expressed in the axioms, require proof.

For some time this degree of exactness in the construction of theories seemed
sufficient. However, it turned out that the assumption of a consistent set of
axioms does not prevent the occurrence of another kind of paradoxes, called
semantic paradoxes.

For instance, let us consider the arithmetic based on the well known system
of axioms due to Peano (to be discussed in chapter...) and let’s consider the
following simple reasoning.

Berry, 1906 Let A denote the set of all positive integers which can be defined
in the English language by means of a sentence containing at most 1000
letters. The set A is finite since the set of all sentences containing at most
1000 letters is finite. Hence, there exist positive integers which do not
belong to A. The sentence:

n is the least positive integer which cannot be defined by means of a sen-
tence of the English language containing at most 1000 letters

contains less than 1000 letters and defines a positive integer n. Therefore n
belongs to A. On the other hand, n does not belong to A by the definition
of n. This contradicts the first statement.

It is obvious that the reason for this paradox is that in its construction we used
some notions (e.g the English language, letters, sentences) which do not belong
to pure arithmetic. Usually we do not introduce definitions like the above in
mathematics. The paradox resulted entirely from the fact that we did not say
precisely what notions and sentences belong to the arithmetic and what notions
and sentences concern the arithmetic, examined as a fix and closed deductive
system. Intuitively we conceive the arithmetic to be a set of sentences expressing
certain properties of positive integers and of other notions defined by means of
the notion of integer. For example, a sentence: for every integer n, n?> < 0
certainly belongs to arithmetic.

On the other hand we can also talk about the arithmetic. That is, assuming
that all sentences in the arithmetic are formulated in the English language, we
can formulate sentences concerning the problem how many integers we defined
in the arithmetic by means of at most 1000 letters. However, such sentences
about the arithmetic do not belong to arithmetic. They belong to another
theory, which examines the arithmetic as a new subject of investigation. This
theory is usually called meta-arithmetic. In particular, the Berry sentence does
not belong to arithmetic; it belongs to meta-arithmetic and the paradox arises
from the luck of distinction between a theory (language) and its meta-theory
(metalanguage).



For a similar reason in well defined theory the following paradoxes can not
appear.

The Liar Paradox (Greek philosopher Eubulides of Miletus, 400 BC)
A man says: I am lying. If he is lying, then what he says is true, and so
he is not lying. If he is not lying, then what he says is not true, and so he
is lying. In any case, he is lying and he is not lying.

Lob, 1955 Let A be any sentence. Let B be a sentence: If this sentence is true,
then A. So, B asserts: If B is true then A. Now consider the following
argument: Assume B is true. Then, by B, since B is true, A is true. This
argument shows that, if B is true, then A. But this is exactly what B
asserts. Hence, B is true. Therefore, by B, since B is true, A is true. Thus
every sentence is true.

In these cases the paradox arises because the concepts of 7 I am true”, ” this
sentence is true, 7 I am lying”” should not occur in the language (theory). It
belong to a metalanguage (meta-theory).

The Liar Paradox is a corrected version of a following paradox stated in antiquity
by a Cretan philosopher Epimenides, 600 BC.

Cretan ” Paradox” (The Cretan philosopher Epimenides paradox, 600 BC)

Epimenides, a Cretan said: All Cretans are liars. If what he said is true, then,
since Epimenides is a Cretan, it must be false. Hence, what he said is
false. Thus, there must be some Cretan who is not a liar.

Note that the conclusion that there must be some Cretan who is not a liar is not
logically impossible, so we do not have a genuine paradox. However, the fact
that the utterance by Epimenides of the false sentence could imply the existence
of some Cretan who is not a liar is rather unsettling.

It follows from above semantic paradozes that in order to exclude them from an
axiomatic theory, it is necessary to describe its language precisely, i.e. the set
of sentences of the theory and the set of signs used to build these sentences. In
this way we avoid contradictions caused by a collision between the theory and
meta-theory, that is, by including meta-theoretical statements in the theory.
This inclines us to introduce still greater precision in the construction of math-
ematical (and others) theories and leads to the concept of formalized theories,
in which not only the properties of primitive notions are given in an exact way
by means of a set of azxioms, but also the language of the theory is precisely
defined. The formalization of the language also gives the following advantage:
it permits us to describe precisely the logical means assumed in the theory, i.e.
to define the process of deduction precisely.



In formalized mathematical theories, e.g. in formalized arithmetic and formal-
ized set theory, the paradoxes as those mentioned above cannot be constructed.
On the other hand, a mathematician (or a computer scientist) following good in-
tuitions in every -day investigations does not reach a contradiction even though
the language of the theory and the logical means he employs are not precisely
described. This is explained by the fact that his investigations can always in
practice be repeated in a corresponding formalized theory. Thus he avoids
practical difficulties of formalized theories, the formalized language of of which
is complicated and very inconvenient in every day practice. Consequently, in
mathematical practice we build theories axiomatically but always in such a way
that they can be easily formalized, i.e. that all the reasonings can be repeated in
a corresponding formalized theory. However, the formalization of the language
and the logical means are necessary if we intend to develop the meta-theory of
a given practical theory because only in this way such important notions as the
existence of a proof of a given statement or the set of all theorems of the theory
can be precisely defined. In practical, non-formalized axiomatic theories those
notions are far from this precision.

Whatever approach one takes to the paradoxes, it is always necessary first to
examine the language of logic and mathematics or given domain of computer
science, to see what symbols may be used, to determine the way ways in which
these symbols are put together to form terms, formulas, sentences, and proofs,
and to find out what can and cannot be proved if certain axioms and rules of
inference are assumed.

This is the basic task of mathematical logic, and, until it is done, there is no
basis of talking about foundations of logic, mathematics or computer science.

This approach is already almost a century old - the first formalized theory was
built by Frege in 1891. The deep and devastating results of Godel, Tarski,
Church, Rosser, Kleene and many others followed. They created what is called
a modern mathematical logic and have earned for it its status as an independent
branch of mathematics.

2 Computer Science Puzzles

Logical and semantical paradoxes have lead the mathematicians to the devel-
opment of a modern classical logic as an independent domain of mathematics.
They have also, as we could see, lead to the development of the intuitionistic
logic as rival to the classical one. The classical and intuitionistic logic differ on
the interpretation of the meaning of the word ezists, but also, as we will see
later, in the interpretation of logical implication, i.e. the truthfulness of the
sentences of the form if A then B is decided differently in both logics.

In 1918, an American philosopher, C.I. Lewis proposed yet another interpreta-



tion of lasting consequences, of the logical implication. In an attempt to avoid,
what some felt, the paradoxes of implication (a false sentence implies any sen-
tence) he created a modal logic. The idea was to distinguish two sorts of truth:
necessary truth and mere possible (contingent) truth. A possibly true sentence
is one which, though true, could be false.

More recently, modal logic has become much-used in computer science as a tool
for analyzing such notions as knowledge, belief, tense.

The logics other than the classical propositional or predicate logic are usually
called non-standard logics. The use of classical logic on computer science is
known, undisputable, and well established.The existence of PROLOG and Logic
Programming as a separate field of computer science is the best example of it.
But the non-standard logics have been imported into a great many areas of
computer science and, in particular into the research about the specification
and verification of programs, the analysis of behavior of distributed systems
and into almost all areas of artificial intelligence. Even in Logic Programming,
once we start to talk about logic programming programs we run immediately
into some non-standard logics.

Modal logic, for example, has been employed in form of Dynamic logic (Harel
1979) to facilitate the statement and proof of properties of programs.

Temporal Logics were created for the specification and verification of concurrent
programs Harel, Parikh, 1979, 1983), for a specification of hardware circuits
Halpern, Manna and Maszkowski, (1983), to specify and clarify the concept of
causation and its role in commonsense reasoning (Shoham, 1988).

Intuitionistic logic, in the form of Martin-Lof’s theory of types (1982), provides
a complete theory of the process of program specification, construction , and
verification. A similar theme has been developed by Constable (1971) and
Beeson (1983).

The great strength of dynamic and temporal logics relates to their expressive
power. In such systems it is possible to express properties of programs in an
elegant and natural way. This is in large part due to enriched language of such
logics over the classical predicate calculus. In the case of intuitionistic logic
the motivation for their employment, as it was mentioned before, is different.
The proponents of intuitionistic logic and mathematics claim that constructive
mathematics is, generally, a more appropriate framework for computer science
than classical logic and mathematics.

Fuzzy logic, Many valued logics were created and developed to reasoning with
incomplete information. Most expert systems are forced to take decisions when
not all the facts pertaining to decision are available. In such context it is natural
to employ logics which, unlike classical logic, are suited to reasoning with such
incomplete information.



The development of different logics and the applications of logic to different
areas of computer science or even artificial intelligence only is far beyond the
scope of class.

We will present now some the most known motivations ( computer science puz-
zles), which have played lately a similar role in the development of the reasoning
about knowledge in distributed systems and artificial intelligence as logical and
semantical paradoxes have played in the development of logic and foundations
of mathematics.

2.1 Reasoning about knowledge in distributed systems

The major complexities in designing, understanding and reasoning about dis-
tributed systems arise from the uncertainties inherent in the system, particularly
with regard to message delivery and possible faulty or unexpected behavior of
processors. A protocol must be designed (and proved!) to function properly
even if it is possible for messages to be lost, for messages to arrive out of order,
or for some processor to fail. It is difficult (probably) impossible for one node
to know everything about the rest of the network. Yet we are often interested in
situations in which everyone in a group (every processor in the network) knows
a certain fact. But even the state of knowledge in which everyone knows that
everyone knows does not suffice for a number of applications. In some cases
we also need to consider the state in which simultaneously everyone knows a
fact F, everyone knows that everyone knows F, everyone knows that everyone
knows that everyone knows F, and so on. In this case it is said that the group
has common knowledge of F. The relationship between the common knowl-
edge, simultaneous agreement and coordinate action is nicely put together in
the coordinated attack problem, from the distributed system folklore.

Grey, 1978. Halpern, Moses, 1984 Two divisions of an army are camped
on two hilltops overlooking a common valley. In the valley awaits the
enemy. It is clear that if both divisions attack the enemy simultaneously
they will win the battle, whereas if only one division attacks it will be
defeated. The divisions do not initially have plans for launching an attack
on the enemy, and the commanding general of the first division wishes to
coordinate a simultaneous attack (at some time the next day). Neither
general will decide to attack unless he is sure that the other will attack
with him. The generals can only communicate by means of a messenger.
Normally, it takes a messenger one hour to get from one encampment
to the other. However, it is possible that he will get lost in the dark or,
worst yet, be captured by the enemy. Fortunately, on this particular night,
everything goes smoothly. How long will it take them to coordinate an
attack?



Suppose the messenger sent by General A makes it to General B with a message
saying Attack at dawn. Will B attack? No, since A does not know B got the
message, and thus may not attack. So B sends the messenger back with an
acknowledgment. Suppose the messenger makes it. Will A attack? No, because
now A is worried that B does not know A got the message, so that B thinks
A may think that B did not get the original message, and thus not attack.
So A sends the messenger back with an acknowledgment. But of course, this
is not enough either. It is not difficult to be convinced that no amount of
acknowledgments sent back and forth will ever guarantee agreement. Even in
a case that the messenger succeeds in delivering the message every time. All
that is required in this (informal) reasoning is the possibility that the messenger
doesn’t succeed.

This rather convoluted reasoning was expressed formally by Halpern and Moses
in 1985 in terms of a propositional modal logic with m agents. They proved this
logic to be essentially a multi-agent version of the modal logic S5., which we will
study in chapter ....

They also showed that not only is common knowledge (formally defined!) not
attainable in systems where communication is not guaranteed, it is also not at-
tainable in systems where communication is guaranteed, as long as there is some
uncertainty in massage delivery time. Thus, in practical distributed systems ,
common knowledge is not attainable. This holds for systems of communicating
humans as well as processors. What is going on here? After all, we often do
reach agreement! It was shown that common knowledge (as formally defined)
is attainable in such models of reality where we assume, for example, events
can be guaranteed to happen simultaneously. It turns also out that even we
can’t always make this assumption in practice, there are some variants of the
definition of common knowledge that are attainable under more reasonable as-
sumptions, and these variants are indistinguishable in certain cases from the
"true” common knowledge, as originally defined.. So, finally, we can prove that
in fact we often do reach agreement!

2.2 Reasoning in Artificial Intelligence

A key property of intelligence, one may agree, is flexibility. This flexibility is
intimately connected with the defeasible nature of commonsense inference; we
are all capable of drawing conclusions, acting on them, and then retracting them
if necessary in the face of new evidence. If our computer programs are to act
intelligently, they will need to be similarly flexible.

A large portion of the work in artificial intelligence (AI) on reasoning or deduc-
tion involves the development of formal systems that describe this process.

The most usual example of such a flexible inference is the following flying birds



example.

Reiter, 1987 Consider a statement Birds fly. Tweety, we are told, is a bird.
From this, and the fact that birds fly, we conclude that Tweety can fly.

This conclusion, however is defeasible: Tweety may be an ostrich, a pen-
guin, a bird with a broken wing, or a bird whose feet have been set in
concrete.

The inference here is non-monotonic: on learning a new fact (that Tweety has
a broken wing), you are forced to retract your conclusion that he could fly. This
original conclusion didn’t follow logically (in a sense if classical logic) from the
facts that birds typically fly and that Tweety is a bird; it followed from these
facts together with the assumption that Tweety is a typical bird. When we learn
more about Tweety, we may discover that this assumption is unjustified.

It means, by a non-monotonic reasoning (logics) we understand reasonings (log-
ics) in which the introduction of a new information (axioms) can invalidate old
theorems.

The inference described here is also called a default reasoning.

It means, by default reasoning we mean the drawing of plausible inferences from
less-then- conclusive evidence in the absence of information to the contrary.

Consider now the following example.

Moore, 1983 Consider my reason for believing that I do not have an older
brother. It is surely not that one of my parents once casually remarked,
You know, you don’t have any older brothers, nor have I pieced it together
by carefully sifting other evidence. I simply believe that if I did have an
older brother I would know about it; therefore, since I don’t know of any
older brothers of mine, I must not have any.

This type of reasoning is not a form of default reasoning at all; it rather seems
to be more like reasoning about one’s own knowledge or belief. Hence it is called
an auto-epistemic reasoning.

It means, by auto-epistemic reasoning we mean the reasoning about one’s own
beliefs or knowledge.

The auto-epistemic reasoning is intended to model the reasoning of an ideally
rational agent reflecting upon his beliefs or knowledge. Logics which describe it
are called auto-epistemic logics.

In addition to application to the understanding of common-sense reasoning, non-
monotonic reasoning (non-monotonic logics) has been shown to be important in
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other areas. There are applications to logic programming, to planning and rea-
soning about action, and to automated diagnosis. As the formal work matures,
increasing effort is being devoted to applying the improved understanding to
the solution of practical problems.

We will end this introduction by McCarthy discussion of a much used in Al
puzzle Missionaries and Cannibals, as a proof of a need of another ”stretch ”
from classical logic.

McCarthy, 1985 Consider the Missionaries and Cannibals puzzle.

Three missionaries and three cannibals come to the river. A rowboat that
seats two is available. If the cannibals ever outnumber the mission-
aries on either bank of the river, the missionaries will be eaten. How
shall they cross the river?

Obviously the puzzler is expected to devise a strategy of rowing the boat
back and forth that gets them all across and avoids the disaster.

Ammarel considered several representations of the problem and discussed
criteria whereby the following representation is preferred for purposes of
Al because it leads to the smallest state space that must be explored to
find the solution. A state is a triple comprising the number of missionaries,
cannibals and boats on the starting bank of the river. The initial state is
331, the desired state is 000, and one solution is given by the sequence:
331, 220, 321, 300,311, 110, 221, 020, 031, 010, 021, 000.

We are not presently concerned with the heuristic of the problem but
rather with the correctness of the reasoning that goes from the English
statement of the problem to Amerel’s state space representation. A gener-
ally intelligent computer program should be able to carry out this reason-
ing. Of course, there are the well known difficulties in making computers
understanding English, but suppose the English sentences describing the
problem have already been rather directly translated into first order logic.
The correctness of Amarel’s representation is not an ordinary logical conse-
quence of these sentences for two further reasons. First, nothing has been
said about the properties of boats or even the fact that rowing across the
river doesn’t change the number of missionaries or cannibals or the capac-
ity of the boat. Indeed it hasn’t been stated that situations change as a
result of action. These facts follow from common sense knowledge, so let
us imagine that common sense knowledge, or at least the relevant part of
it, is also expressed in first order logic.

The second reason we can’t deduce the propriety of Amarel’s representa-
tion is deeper. Imagine giving someone a problem, and after he puzzles for
a while, he suggests going upstream half a mile and crossing on a bridge.
What a bridge? you say. No bridge is mentioned in the statement of the
problem. And this dunce replies, Well, they don’t say the isn’t a bridge.
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You look at the English and even at the translation of the English into
first order logic, and you must admit that they don’t say there is no bridge.
So you modify the problem to exclude the bridges and pose it again, and
the dunce proposes a helicopter, and after you exclude that, he proposes
a winged horse or that the others hang onto the outside of the boat while
two row.

You now see that while a dunce, he is an inventive dunce. Despairing of
getting him to accept the problem in the proper puzzler’s spirit, you tel
him the solution. To your further annoyance, he attacks your solution on
the grounds that the boat might have a leak or lack oars. After you rectify
that omission from the statement of the problem, he suggests that a see
monster may swim up the river and may swallow the boat. Again you are
frustrated, and you look for a mode of reasoning that will settle his hash
once and for all.

McCarthy proposes circumscription as a technique for solving his puzzle. He
argues that it is a part of common knowledge that a boat can be used to cross the
river unless there is something with it or something else prevents using it, and if
our facts do not require that there be something that prevents crossing the river,
circumscription will generate the conjecture that there isn’t. Among the various
competing approaches to model the common sense reasoning circumscription
appears to have the most advocates.

One of the serious difficulties is that the circumscription axiom itself involves a
quantification over predicates, and there is therefore a sentence in second-order
logic. Little is known about automated deduction using second-order sentences,
but on the other hand Lifschits has shown in 1987 that in some special cases
the circumscription is equivalent to a first order sentence. In this way we can
go back, in those cases, to our secure and well known classical logic.

HOMEWORK.

—_

. Write definition of logical and semantical paradox.

2. Give an example of a logical paradozx.

©w

Give an example of a semantical paradoz.

e

Describe a difference between logical and semantical paradoxes.

Describe a role of paradoxes in the development of classical logic and
foundations of mathematics.

ot

6. Write a definition os a non-standard logic.
7. Give an example of some non-standard logics.

8. Describe a difference between classical and intuitionistic logic.
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9. Give two examples of Computer Science Puzzles.
10. What a default reasoning is? Give an example.
11. What a non - monotonic reasoning is? Give an example.

12. What an auto-epistemic reasoning is? Give an example.
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