QUESTION 1

\(H \) is the following proof system:

\[
H = (\mathcal{L}_{\{\Rightarrow, \neg}\}, \mathcal{F}, \ AX = \{A1, A2, A3, A4\}, \ MP)
\]

A1 \((A \Rightarrow (B \Rightarrow A)),\)

A2 \(((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))\),

A3 \(((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))\)

A4 \(((A \Rightarrow B) \Rightarrow A) \Rightarrow A\)

MP (Rule of inference)

\[
(MP) \frac{A; (A \Rightarrow B)}{B}
\]

(1) Prove that \(H \) is SOUND under classical semantics.

(2) Does Deduction Theorem holds for \(H \)? Justify shortly your answer.

(3) Is \(H \) COMPLETE with respect to all classical semantics tautologies? JUSTIFY your answer.
QUESTION 2 Let H be the proof system defined in QUESTION 1.

(a) Prove the following: $A \vdash_H (A \Rightarrow A)$

(b) We know that $\vdash_H (\neg A \Rightarrow (A \Rightarrow B))$. Prove, that $\neg A, A \vdash_H B$.

QUESTION 3 Here are consecutive steps $B_1, ..., B_5$ in the formal proof in H_2 of

$(B \Rightarrow \neg\neg B)$

$B_1 = ((\neg\neg\neg\neg B \Rightarrow \neg B) \Rightarrow ((\neg\neg\neg B \Rightarrow B) \Rightarrow \neg\neg B))$

$B_2 = (\neg\neg\neg B \Rightarrow \neg B)$
\[B_3 = ((\neg\neg B \Rightarrow B) \Rightarrow \neg B) \]

\[B_4 = (B \Rightarrow (\neg\neg B \Rightarrow B)) \]

\[B_5 = (B \Rightarrow \neg\neg B) \]

Complete the steps \[B_1, \ldots, B_5 \]

of the proof by writing all details in the space provided below each step of the proof.

You have to write down **the proper substitutions and formulas** used at each step of the proof.

You can use the following already proved facts:

1. \((A \Rightarrow B), (B \Rightarrow C) \vdash_{H_2} (A \Rightarrow C),\)

2. \(\vdash_{H_2} (\neg B \Rightarrow B).\)
QUESTION 4 Let A be a formula
\[((-a \Rightarrow -b) \Rightarrow c) \]
and let v be such that
\[v(a) = T, \quad v(b) = F, v(c) = F. \]
Evaluate A', B_1, \ldots, B_n as defined by the following definition.

Definition Let A be a formula and b_1, b_2, \ldots, b_n be all propositional variables that occur in A.
Let v be variable assignment $v : VAR \rightarrow \{T, F\}$.

We define, for A, b_1, b_2, \ldots, b_n and v a corresponding formulas $A', B_1, B_2, \ldots, B_n$ as follows: (for $i = 1, 2, \ldots, n$)
\[
A' = \begin{cases}
A & \text{if } v^*(A) = T \\
\neg A & \text{if } v^*(A) = F
\end{cases}
\]
\[
B_i = \begin{cases}
b_i & \text{if } v(b_i) = T \\
\neg b_i & \text{if } v(b_i) = F
\end{cases}
\]

QUESTION 5 Consider a system RS_2 obtained from RS by changing the sequence Γ' into Γ and Δ into Δ' in all of the rules of inference of RS.

1. Construct a decomposition tree in RS_2 of \[((a \Rightarrow b) \Rightarrow (\neg b \Rightarrow a))\]
2. Define in your own words, for any A, the decomposition tree T_A in $RS2$.