QUESTION 1 Give a definition and an example of a default reasoning.

QUESTION 2
1. (4pts) Write the following natural language statement:

 From the fact that it is not necessary that an elephant is not a bird we deduce that:
 it is not possible that an elephant is a bird or, if it is possible that an elephant is a bird, then it is not
 necessary that a bird flies.

 as a formula

 \[A_1 \in \mathcal{F}_1 \text{ of a language } \mathcal{L}_{\{\neg, \wedge, \lor, \Rightarrow\}} , \]

 \[A_2 \in \mathcal{F}_2 \text{ of a language } \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} . \]

2. (2pts) Main connective of the formula \(A_1 \) is: , main connective of the formula \(A_2 \) is:

3. Degree of the formula \(A_1 \) is: , degree of the formula \(A_2 \) is:
4. All proper, non-atomic sub-formulas of A_1 are:

5. All non-atomic sub-formulas of A_2 are:

 A Restricted Model:

 Evaluation:

 A Restricted Counter-Model:

 Evaluation:

7. There are more than 3 possible restricted counter-models of A_2. Justify.
8. There are more than 2 possible restricted models of A_2. Justify your answer.

9. List 3 models and 2 counter-models for A_2 by extending the restricted model and the counter-model you have found in 6. to the set VAR of all variables.

10. There are possible models for A_2.
 There are possible counter-models for A_2.

QUESTION 3 Show that

\[\models (\neg((a \land \neg b) \Rightarrow ((c \Rightarrow (\neg f \lor d)) \lor e)) \Rightarrow ((a \land \neg b) \land (\neg c \Rightarrow (\neg f \lor d)) \land \neg e))). \]
REMINDER: We define H semantics operations \cup and \cap as follows

$$a \cup b = \max\{a, b\}, \quad a \cap b = \min\{a, b\}.$$

The Truth Tables for Implication and Negation are:

H-Implication

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>F</th>
<th>\bot</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\bot</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\bot</td>
<td>T</td>
</tr>
</tbody>
</table>

H Negation

<table>
<thead>
<tr>
<th>\neg</th>
<th>F</th>
<th>\bot</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>\bot</td>
<td>T</td>
</tr>
</tbody>
</table>

QUESTION 4 We know that $v : \text{VAR} \rightarrow \{F, \bot, T\}$ is such that $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$ under H semantics. evaluate $v^*((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b))$.

QUESTION 5

We define a 4 valued L_4 logic semantics as follows. The language is $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$. The logical connectives $\neg, \Rightarrow, \cup, \cap$ of L_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$, defined as follows.

Negation \neg is a function $\neg : \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, T\}$, such that

$$\neg \bot_1 = \bot_1, \quad \neg \bot_2 = \bot_2, \quad \neg F = T, \quad \neg T = F.$$
Conjunction ∩ is a function ∩: \{F, \bot_1, \bot_2, T\} × \{F, \bot_1, \bot_2, T\} → \{F, \bot_1, \bot_2, T\}, such that for any \(a, b \in \{F, \bot_1, \bot_2, T\}\), \(a \cap b = \min\{a, b\}\).

Disjunction ∪ is a function ∪: \{F, \bot_1, \bot_2, T\} × \{F, \bot_1, \bot_2, T\} → \{F, \bot_1, \bot_2, T\}, such that for any \(a, b \in \{F, \bot_1, \bot_2, T\}\), \(a \cup b = \max\{a, b\}\).

Implication ⇒ is a function ⇒: \{F, \bot_1, \bot_2, T\} × \{F, \bot_1, \bot_2, T\} → \{F, \bot_1, \bot_2, T\}, such that for any \(a, b \in \{F, \bot_1, \bot_2, T\}\),

\[
a \Rightarrow b = \begin{cases}
\neg a \cup b & \text{if } a > b \\
T & \text{otherwise}
\end{cases}
\]

Part 1 Write all Truth Tables for \(L_4\)

Solution:

Part 2 Verify whether

\[\models_{L_4}((a \Rightarrow b) \Rightarrow (\neg a \cup b))\]

Solution: