QUESTION 1 (5pts) Give a definition and an example of a default reasoning.

QUESTION 2 (20pts total)

1. (4pts) Write the following natural language statement:

 From the fact that it is not necessary that an elephant is not a bird we deduce that:
 it is not possible that an elephant is a bird or, if it is possible that an elephant is a bird, then it is not
 necessary that a bird flies.

 as a formula

 \[A_1 \in F_1 \text{ of a language } L_{\{\neg, \land, \lor, \Rightarrow\}}, \]

 \[A_2 \in F_2 \text{ of a language } L_{\{\neg, \land, \lor, \Rightarrow\}}. \]

2. (2pts) Main connective of the formula \(A_1 \) is: \(\), main connective of the formula \(A_2 \) is:
3. (1pts) Degree of the formula A_1 is: \ldots, degree of the formula A_2 is: \ldots

4. (2pts) All proper, non-atomic sub-formulas of A_1 are: \ldots

5. (2pts) All non-atomic sub-formulas of A_2 are: \ldots

 A Restricted Model:

 Evaluation:

 A Restricted Counter-Model:

 Evaluation:

7. (1pt) There are more than 3 possible restricted counter-models of A_2. Justify.
8. (1pts) There are more than 2 possible restricted models of A_2. Justify your answer.

9. (2pts) List 3 models and 2 counter-models for A_2 by extending the restricted model and the counter-model you have found in 6. to the set VAR of all variables.

10. (1pts) There are possible models for A_2.

There are possible counter-models for A_2.

QUESTION 2 (EXTRA 5pts) Show that

$$\models (¬((a \cap ¬b) ⇒ ((c ⇒ (¬f \cup d)) \cup e)) ⇒ ((a \cap ¬b) \cap (¬(c ⇒ (¬f \cup d)) \cap ¬e))).$$