Chapter 4: Classical Propositional Semantics

Language:

\[\mathcal{L}\{\neg, \cup, \cap, \Rightarrow\} \]

Classical Semantics assumptions:

TWO VALUES: there are only two logical values: truth (T) and false (F), and

EXTENSIONALITY: the logical value of a formula depends only on a main connective and logical values of its sub-formulas.

We define formally a classical semantics for \(\mathcal{L} \) in terms of two factors: classical truth tables and a truth assignment.
We summarize now here the chapter 2 tables for $\mathcal{L}\{\neg,\cup,\cap,\Rightarrow\}$ in one simplified table as follows.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$\neg A$</th>
<th>$(A \cap B)$</th>
<th>$(A \cup B)$</th>
<th>$(A \Rightarrow B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Observe that The first row of the above table reads:

For any formulas A, B, if the logical value of $A = T$ and $B = T$, then logical values of $\neg A = T$, $(A \cap B) = T$, $(A \cup B) = T$ and $(A \Rightarrow B) = T$.

We read and write the other rows in a similar manner.
Our table indicates that the logical value of of propositional connectives depends only on the logical values of its factors; i.e. it is independent of the formulas \(A, B \).

EXTENSIONAL CONNECTIVES: The logical value of a given connective depend only of the logical values of its factors.

We write now the last table as the following equations.

\[
\begin{align*}
\neg T &= F, & \neg F &= T; \\
(T \cap T) &= T, & (T \cap F) &= F, & (F \cap T) &= F, & (F \cap F) &= T; \\
(T \cup T) &= T, & (T \cup F) &= T, & (F \cup T) &= T, & (F \cup F) &= F; \\
(T \Rightarrow T) &= T, & (T \Rightarrow F) &= F, & (F \Rightarrow T) &= T, & (F \Rightarrow F) &= T.
\end{align*}
\]
Observe now that the above equations describe a set of unary and binary operations (functions) defined on a set \(\{T, F\} \) and a set \(\{T, F\} \times \{T, F\} \), respectively.

Negation \(\neg \) is a function:

\[
\neg : \{T, F\} \rightarrow \{T, F\},
\]

such that \(\neg T = F, \neg F = T \).

Conjunction \(\cap \) is a function:

\[
\cap : \{T, F\} \times \{T, F\} \rightarrow \{T, F\},
\]

such that
\[
(T \cap T) = T, \quad (T \cap F) = F,
\]
\[
(F \cap T) = F, \quad (F \cap F) = F.
\]
Dissjunction \cup is a function:

\[
\cup : \{T, F\} \times \{T, F\} \rightarrow \{T, F\},
\]

such that

\[
(T \cup T) = T, \quad (T \cup F) = T,
\]
\[
(F \cup T) = T, \quad (F \cup F) = F.
\]

Implication \Rightarrow is a function:

\[
\Rightarrow : \{T, F\} \times \{T, F\} \rightarrow \{T, F\},
\]

such that

\[
(T \Rightarrow T) = T, \quad (T \Rightarrow F) = F,
\]
\[
(F \Rightarrow T) = T, \quad (F \Rightarrow F) = T.
\]

Observe that if we have have a language $\mathcal{L}\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow\}$ containing also the equivalence connective \Leftrightarrow we define

\[
\Leftrightarrow : \{T, F\} \times \{T, F\} \rightarrow \{T, F\},
\]

as a function such that

\[
(T \Leftrightarrow T) = T, \quad (T \Leftrightarrow F) = F,
\]
\[
(F \Leftrightarrow T) = F, \quad (T \Leftrightarrow T) = T.
\]
We write these definitions of connectives as the following tables, usually called the classical truth tables.

<table>
<thead>
<tr>
<th>Negation</th>
<th>Disjunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjunction</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>∩</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇔</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
A truth assignment is any function

\[v : VAR \rightarrow \{ T, F \}. \]

Observe that the truth assignment is defined only on variables (atomic formulas).

We define its extension \(v^* \) to the set \(\mathcal{F} \) of all formulas of \(\mathcal{L} \) as follows.

\[v^* : \mathcal{F} \rightarrow \{ T, F \} \]

is such that

(i) for any \(a \in VAR \),

\[v^*(a) = v(a); \]
(ii) and for any $A, B \in \mathcal{F}$,

$$v^*(\neg A) = \neg v^*(A);$$

$$v^*(A \cap B) = v^*(A) \cap v^*(B);$$

$$v^*(A \cup B) = v^*(A) \cup v^*(B);$$

$$v^*(A \Rightarrow B) = v^*(A) \Rightarrow v^*(B),$$

$$v^*(A \iff B) = v^*(A) \iff v^*(B),$$

where the symbols on the left-hand side of the equations represent connectives in their natural language meaning and the symbols on the right-hand side represent connectives in their logical meaning given by the classical truth tables.
Example

Consider a formula

\[((a \Rightarrow b) \cup \neg a) \]

a truth assignment \(v \) such that

\[v(a) = T, v(b) = F. \]

We calculate the logical value of the formula \(A \) as follows:

\[
v^*(A) = v^*((a \Rightarrow b) \cup \neg a) = v^*(a \Rightarrow b) \cup v^*(\neg a) = (v(a) \Rightarrow v(b)) \cup \neg v(a) = (T \Rightarrow F) \cup \neg T = F \cup F = F.
\]

Observe that we did not need (and usually we don’t) to specify the \(v(x) \) of any \(x \in \text{VAR} - \{a, b\} \), as these values do not influence the computation of the logical value \(v^*(A) \).
SATISFACTION relation

Definition: Let $v : VAR \rightarrow \{T, F\}$. We say that

v satisfies a formula $A \in \mathcal{F}$ iff $v^*(A) = T$

Notation: $v \models A$.

Definition: We sat that

v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$.

Notation: $v \not\models A$.

REMARK In our classical semantics we have that

$v \not\models A$ iff $v^*(A) = F$ and we say that v falsifies the formula A.
OBSERVE $v^*(A) \neq T$ is equivalent to the fact that $v^*(A) = F$ ONLY in 2-valued logic!

This is why we adopt the following

Definition: For any v,

v does not satisfy a formula $A \in \mathcal{F}$ iff $v^*(A) \neq T$
Example

\[A = ((a \Rightarrow b) \cup \neg a) \]

\[v : VAR \longrightarrow \{ T, F \} \]

such that \(v(a) = T, v(b) = F \).

Calculation of \(v^*(A) \) using the short hand notation:

\[(T \Rightarrow F) \cup \neg T = F \cup F = F. \]

\[v \not\models ((a \Rightarrow b) \cup \neg a)). \]

Observe that we did not need (and usually we don’t) to specify the \(v(x) \) of any \(x \in VAR - \{a, b\} \), as these values do not influence the computation of the logical value \(v^*(A) \).
Example

\[A = ((a \cap \neg b) \cup \neg c) \]

\[v : VAR \rightarrow \{T, F\} \]

such that \(v(a) = T, v(b) = F, v(c) = T \).

Calculation in a short hand notation:

\[(T \cap \neg F) \cup \neg T = (T \cap T) \cup F = T \cup F = T. \]

\[v \models ((a \cap \neg b) \cup \neg c). \]
Formula: \[A = ((a \cap \neg b) \cup \neg c). \]

Consider now \(v_1 : VAR \rightarrow \{T, F\} \) such that
\[
\begin{align*}
 v_1(a) &= T, \\
v_1(b) &= F, \\
v_1(c) &= T, \\
v_1(x) &= F, & \text{for all } x \in VAR - \{a, b, c\},
\end{align*}
\]

Observe: \(v(a) = v_1(a), v(b) = v_1(b), v(c) = v_1(c) \), so we get
\[
v_1 \models ((a \cap \neg b) \cup \neg c).\]
Consider $v_2 : VAR \rightarrow \{T, F\}$ such that
\[v_2(a) = T, v_2(b) = F, v_2(c) = T, v_2(d) = T, \]
and
\[v_2(x) = F, \quad \text{for all } x \in VAR - \{a, b, c, d\}, \]

Observe: $v(a) = v_2(a), v(b) = v_2(b), v(c) = v_2(c)$, so we get
\[v_2 \models ((a \cap \neg b) \cup \neg c). \]
We are going to prove that there are as many of such truth assignments as real numbers! but they are all the same as the first \(v \) with respect to the formula \(A \).

When we ask a question: "How many truth assignments satisfy/fasify a formula \(A \)?" we mean to find all assignment that are different on the formula \(A \), not just different on a set \(\text{VAR} \) of all variables, as all of our \(v_1, v_2 \)’s were.

To address and to answer this question formally we first introduce some notations and definitions.
Notation: for any formula A, we denote by
\[
VAR_A
\]
a set of all variables that appear in A.

Definition: Given a formula $A \in \mathcal{F}$, any function
\[
w : VAR_A \longrightarrow \{T, F\}
\]
is called a truth assignment restricted to A.
Example

\[A = ((a \cap \neg b) \cup \neg c) \]

\[\text{VAR}_A = \{a, b, c\} \]

Truth assignment restricted to \(A \) is any function:

\[w : \{a, b, c\} \rightarrow \{T, F\} \].

We use the following theorem to count all possible truth assignment restricted to \(A \).

Counting Functions Theorem (1) For any finite sets \(A \) and \(A \), if \(A \) has \(n \) elements and \(B \) has \(m \) elements, then there are \(m^n \) possible functions that map \(A \) into \(B \).

There are \(2^3 = 8 \) truth assignment restricted to \(A = ((a \Rightarrow \neg b) \cup \neg c) \).
General case For any A there are

$$2^{|VAR_A|}$$

possible truth assignments w restricted to A.
All \(w \) restricted to \(A \) are listed in the table below.

\[
A = ((a \cap \neg b) \cup \neg c)
\]

<table>
<thead>
<tr>
<th>(w)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(w^*(A)) computation</th>
<th>(w^*(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>((T \Rightarrow T)) \cup \neg T \equiv T \cup F \equiv T</td>
<td>T</td>
</tr>
<tr>
<td>(w_2)</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>((T \Rightarrow T)) \cup \neg F \equiv T \cup T \equiv T</td>
<td>T</td>
</tr>
<tr>
<td>(w_3)</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>((T \Rightarrow F)) \cup \neg F \equiv F \cup T \equiv T</td>
<td>T</td>
</tr>
<tr>
<td>(w_4)</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>((F \Rightarrow F)) \cup \neg T \equiv T \cup F \equiv T</td>
<td>T</td>
</tr>
<tr>
<td>(w_5)</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>((F \Rightarrow T)) \cup \neg T \equiv T \cup F \equiv T</td>
<td>T</td>
</tr>
<tr>
<td>(w_6)</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>((F \Rightarrow T)) \cup \neg F \equiv T \cup T \equiv T</td>
<td>T</td>
</tr>
<tr>
<td>(w_7)</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>((T \Rightarrow F)) \cup \neg T \equiv F \cup F \equiv F</td>
<td>F</td>
</tr>
<tr>
<td>(w_8)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>((F \Rightarrow F)) \cup \neg F \equiv T \cup T \equiv T</td>
<td>T</td>
</tr>
</tbody>
</table>

Model for \(A \) is a \(v \) such that

\[
 v \models A.
\]

\(w_1, w_2, w_3, w_4, w_5, w_6, w_8 \) are **models** for \(A \).

Counter- Model for \(A \) is a \(v \) such that

\[
 v \not\models A.
\]

\(w_7 \) is a **counter- model** for \(A \).
Tautology:

A is a tautology iff any \(v \) is a model for \(A \), i.e.

\[
\forall v (v \models A).
\]

Not a tautology:

A is not a tautology iff there is \(v : VAR \rightarrow \{T, F\} \), such that \(v \) is a counter-model for \(A \), i.e.

\[
\exists v (v \not\models A).
\]

Tautology Notation \(\models A \)

Example

\(\not\models ((a \cap \neg b) \cup \neg c) \)

because the truth assignment \(w_7 \) is a counter-model for \(A \).
Tautology Verification

Truth Table Method: list and evaluate all possible truth assignments restricted to A.

Example: $(a \Rightarrow (a \cup b))$.

<table>
<thead>
<tr>
<th>v</th>
<th>a</th>
<th>b</th>
<th>$v^*(A)$ computation</th>
<th>$v^*(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>T</td>
<td>T</td>
<td>$(T \Rightarrow (T \cup T)) = (T \Rightarrow T) = T$</td>
<td>T</td>
</tr>
<tr>
<td>v_2</td>
<td>T</td>
<td>F</td>
<td>$(T \Rightarrow (T \cup F)) = (T \Rightarrow T) = T$</td>
<td>T</td>
</tr>
<tr>
<td>v_3</td>
<td>F</td>
<td>T</td>
<td>$(F \Rightarrow (F \cup T)) = (F \Rightarrow T) = T$</td>
<td>T</td>
</tr>
<tr>
<td>v_4</td>
<td>F</td>
<td>F</td>
<td>$(F \Rightarrow (F \cup F)) = (F \Rightarrow F) = T$</td>
<td>T</td>
</tr>
</tbody>
</table>

for all $v : VAR \rightarrow \{T, F\}$, $v \models A$, i.e.

\[\models (a \Rightarrow (a \cup b)). \]
Proof by Contradiction Method

One works backwards, trying to find a truth assignment \(v \) which makes a formula \(A \) false.

If we find one, it means that \(A \) is not a tautology,

if we prove that it is impossible,

it means that the formula is a tautology.

Example \(A = (a \Rightarrow (a \cup b)) \)

Step 1 Assume that \(\not\models A \), i.e. \(A = F \).
Step 2 Analyze Strep 1:

\[(a \Rightarrow (a \cup b)) = F \iff a = T \text{ and } a \cup b = F.\]

Step 3 Analyze Step 2:

\[a = T \text{ and } a \cup b = F, \text{ i.e. } T \cup b = F.\]

This is impossible by the definition of \(\cup\).

Conclusion:

\[\models (a \Rightarrow (a \cup b)).\]

Observe that exactly the same reasoning proves that for any formulas \(A, B \in \mathcal{F},\)

\[\models (A \Rightarrow (A \cup B)).\]
Observe that the following formulas are tautologies

\[(((a \Rightarrow b) \cap \neg c) \Rightarrow (((a \Rightarrow b) \cap \neg c) \cup \neg d)), \]

\[(((a \Rightarrow b) \cap \neg C') \cup d) \cap \neg e) \Rightarrow \]

\[(((a \Rightarrow b) \cap \neg C') \cup d) \cap \neg e) \cup ((a \Rightarrow \neg e)) \]

because they are of the form

\[(A \Rightarrow (A \cup B)). \]
Tautologies, Contradictions

\[T = \{ A \in \mathcal{F} : \models A \}, \]
\[C = \{ A \in \mathcal{F} : \forall v (v \not\models A) \}. \]
Theorem 1 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.

(1) A is a tautology

(2) $A \in T$

(3) $\neg A$ is a contradiction

(4) $\neg A \in C$

(5) $\forall v \ (v^*(A) = T)$

(6) $\forall v \ (v \models A)$

(7) Every v is a model for A
Theorem 2 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.

1. A is a contradiction
2. $A \in C$
3. $\neg A$ is a tautology
4. $\neg A \in T$
5. $\forall v \ (v^*(A) = F)$
6. $\forall v \ (v \not\models A)$
7. A does not have a model.