
CHAPTER 4

General Proof Systems: Syntax and Semantics

Proof systems are built to prove, construct formal proofs of statements formu-
lated in a given language formulated in a given language. First component of
any proof system is hence its formal language L. Proof systems can be thought
as an inference machine with special statements, called provable statements, or
theorems being its final products. The starting points are called axioms of the
proof system. We distinguish two kinds of axioms: logic LA and specific SA.

When building a proof system for a given language and its semantics i.e. for a
logic defined semantically we choose as a set of logical axioms LA some subset of
tautologies, i.e. statements always true. This is why we call them logical axioms.
A proof system with only logic axioms LA is also called logic proof systems,
or just proof systems for short. If we build a proof system for which there is
no known semantics, as it has happened in the case of classical, intuitionistic,
and modal logics, we think about the logical axioms as statements universally
true. We choose as axioms (finite set) the statements we for sure want to be
universally true, and whatever semantics follows they must be tautologies with
respect to it. Logical axioms are hence not only tautologies under an established
semantics, but they also guide us how to establish a semantics, when it is yet
unknown.

For the set of specific axioms SA we choose these formulas of the language that
describe our knowledge of a universe we want to prove facts about. They are not
universally true, they are true only in the universe we are interested to describe
and investigate. This is why we call them specific axioms. A proof system with
logical axioms LA and specific axioms SA is called a formal theory based on a
proof system with logic axioms LA.

The inference machine is defined by a finite set of rules, called inference rules.
The inference rules describe the way we are allowed to transform the information
within the system with axioms as a staring point. The process of this transfor-
mation is called a formal proof. The provable formulas for which we have a
formal proof are called consequences of the axioms, or theorem, or just simple
provable formulas. We use proof systems not only to be able to build formal
proofs in them, but also to search for proofs of given statements of their the
language. We distinguish special proof systems for which it is possible to define
a mechanical method for determining, given any statement of A, but which also
generates a proof, is called syntactically decidable or automatically decidable, or
an automated system

1

When building a proof system we choose not only axioms of the system, but also
specific rules of inference. The choice of rules is often linked, as was the choice of
axioms, with a given semantics. We want the rules to preserve the truthfulness
of what we are proving from axioms via the rules. Rules with this property
are called sound rules and the system a sound proof system. The notion of
truthfulness is always defined by a given propositional, or predicate language
L semantics M. Rules of inference can be sound under one semantics and not
sound under another. When developing a proof system S the first goal is prove
a theorem, called Soundness Theorem about its relationship with its semantics
M. It states that the following holds for any formula A of the language L of the
system S. If a formula A is provable from logical axioms LA of S only, then A
is a tautology under the semantics M.

A proof system can be sound under one semantics, and not sound under the
other. For example a set of axioms and rules sound under classical logic seman-
tics might not be sound under intuitionistic semantics, H, L, K semantics, or
others. This is why we talk about proof systems for classical logic, intuitionistic
logic, for modal logics etc. In general there are many proof systems that are
sound under a given semantics, i.e. there are many sound proof systems for a
given logic semantically defined. We present some examples at the end of the
chapter. Given a proof system S with logical axioms LA that is sound under a
given semantics M . Let TM be a set of all tautologies defined by the semantics
M , i.e. TM = {A : |=M A}. A natural questions arises: are all tautologies
defined by the semantics M , provable in the system S that is sound under the
semantics M . The positive answer to this question is called a completeness
property of the system S. Because we ask the completeness property question
for sound systems only we put it in a form of a theorem called a Completeness
Theorem for a proof system S, under a semantics M . It states that the following
holds for any formula A of the language L of the system S. A formula A is
provable in S if and only if A is a tautology under the semantics M . We write
it symbolically as: `S A if and only if |=M A. The Completeness Theorem is
composed from two parts: the Soundness Theorem and the completeness part
that proves the completeness property of a sound system.

Proving the Soundness Theorem for S under a semantics M is usually a straight-
forward and not a very difficult task. We first prove that all logical axioms are
M tautologies, and then that all inference rules of the system preserve the notion
of the M truth (M model). Proving the completeness part of the Completeness
Theorem is always a crucial and very difficult task.

We will study two proofs of the Completeness Theorem for classical propositional
Hilbert style proof system in chapter ??, and a constructive proofs for automated
theorem proving systems for classical logic the chapter ??.

Observe that we formulated all these basic theorems linking semantics and syn-
tax (provability) in a general manner. As we first consider propositional lan-
guages (chapters ??, ??, ??) and hence we use proof systems for propositional

2

logics as examples. The case of predicate logics will be discussed in chapters
??, ??, ??, ??.

1 Syntax

In this section we formulate a definition of a proof system S by specifying and
defining and all its components. We define a notion of a formal proof in a
given proof system, and give simple examples of different proof systems. When
defining a proof system S we specify, as the first step, its formal language L.
When It can be a propositional, or a predicate language. It is a first component
of the proof system S. Given a set F of well formed formulas, of the language
L, we often extend this set, and hence the language L to a set E of expressions
build out of the language L, and some additional symbols, if needed. It is a
second component of the proof system S. Proof systems act as an inference
machine, with provable expressions being its final products. This inference
machine is defined by setting, as a starting point a certain non-empty, proper
subset LA of E , called a set of logical axioms of the system S. The production
of provable formulas is to be done by the means of inference rules. The inference
rules transform an expression, or finite string of expressions, called premisses,
into another expression, called conclusion. At this stage the rules don’t carry
any meaning - they define only how to transform strings of symbols of our
language into another string of symbols. This is a reason why investigation of
proof systems is called syntax or syntactic investigation as opposed to semantcal
methods, which deal with semantics of the language and hence of the proof
system. The syntax- semantics connection within proof systems is established
by Soundness and Completeness theorems and will be discussed in detail in the
section 2.

Definition 1 (Proof System)

By a proof system we understand a triple

S = (L, E , LA,R),

where L = (A,F) is a formal language, called the language of S with a set F of
formulas; E is a set of expressions of S; LA ⊆ E is a non empty set of logical
axioms of the system; R is a finite set of rules of inference.

The components of the proof systems S are defined as follows.

1. The language L of S

In the propositional case, the formal language L consists of two components: an
alphabet A and a set F of formulas. In predicate case the language L consists
of thee components: an alphabet A, a set T of terms and a set F of formulas.

3

The set T of terms is needed to define properly the set of F of formulas and we
list it as to distinguish it the propositional case. We will denote the language
F of S uniformly as L = (A,F) and specify if it is propositional or a predicate
language accordingly. We assume that the both sets A and F are enumerable,
i.e. we will deal here with enumerable languages only.

Semantical Link. Any semantics M for the language L is called the semantics
for the proof system S.

2. The set E of expressions of S

Given a set F of well formed formulas, of the language L, we often extend this
set (and hence the language L to some set E of expressions build out of the
language L, and some additional symbols, if needed.

Automated theorem proving systems use as their basic components expressions
build out of formulas of the language L. They are for example sequences of
formulas in the proof systems RS and RQ presented in chapter ?? and —in
chapter ??, respectively. The first of such systems Gentzen’s systems LK for
classical logic and LK for intuitionistic logic and their followers use expressions
called Gentzen sequents. They are presented and discussed in chapter ??. There
also are resolution based proof systems that use different form of expressions
to represent for clauses and sets of clauses to mention the few. In many proof
system we choose the set of formulas F as expressions, i.e. we put E = F .

Semantical Link. We always have to extend a given semantics M of the lan-
guage L of the system S to the set E of expression.

3. The set LA of logical axioms of S

The logical axioms LA of S form a non-empty subset of the set E of expressions.
In particular, LA is a non-empty subset of formulas, i.e. LA ⊆ F . We assume
here that the set LA of logical axioms is finite, i.e. we consider here only finitely
axiomatizable proof systems.

Semantical Link. Set LA of logical axioms is always a subset of expressions that
are tautologies under the semantics M of the language L of S.

4. The set R of rules of inference of S

We assume that the proof system S contains a finite number of inference rules.
We assume that each rule has a finite number of premisses and one conclusion.
We also assume that one can effectively decide, for any inference rule, whether
a given string of expressions form its premisses and conclusion or do not, i.e.
that all rules r ∈ R are primitivvely recursive.

We put it in a formal definition as follows.

4

Definition 2 (Rule of Inference)

Given a non- empty set E of expressions of a proof system S. Each rule of
inference r ∈ R is a relation defined in the set Em, where m ≥ 1 with values in
E, i.e. r ⊆ Em × E .

Elements P1, P2, . . . Pm of a tuple (P1, P2, . . . Pm, C) ∈ r are called premisses
of the rule r, and C is called its conclusion.

We usually write the inference rules in a following convenient way.

If r is a one premiss rule and (P1, C) ∈ r, then we write it as

(r)
P1

C
.

If r is a two premisses rule and (P1, P2, C) ∈ r, then we write it as

(r)
P1 ; P2

C
,

P1 is called a left premiss of r and P2 is called a right premiss.

In general, if r is an m- premisses rule and (P1, P2, ...Pm, C) ∈ r, then we will
write it as

(r)
P1 ; P2 ; ; Pm

A
.

Semantical Link. We want the rules of inference to preserve truthfulness i.e. to
be sound under the semantics M.

Formal Proofs in S

Given a proof system S = (L, E , LA,R). Final products of a single or multiple
use of the inference rules of S, with logical axioms LA taken as a starting point
are called provable expressions of the system S. A single use of an inference rule
is called a direct consequence. A multiple application of rules of inference with
axioms taken as a starting point is called a formal proof. Formal definitions are
as follows.

Definition 3 (DirectConsequence)

A conclusion of a rule of inference is called a direct consequence of its premisses.
I.e. for any rule of inference r ∈ R, if (P1, ...Pn, C) ∈ r, then C is called a direct
consequence of P1, ...Pn by virtue of r.

5

Definition 4 (Formal Proof)

Given a proof system S = (L, E , LA,R). Any sequence E1, E2, , En of expres-
sions from E, such that n ≥ 1,

E1 ∈ LA, En = E,

and for each 1 < i ≤ n, either Ei ∈ LA or Ei is a direct consequence of
some of the preceding expressions in E1, E2, , En by virtue of one of the rules
of inference r ∈ R is called a formal proof of E in S.

The number n ≥ 1 is the length of the proof E1, E2, , En. We write

`S E

to denote that E ∈ E has a formal proof in S. When the proof system S is
fixed we write ` E.

Any expression E such that E has a proof in S, is called a provable expression
of S. The set of all provable expressions of S is denoted by PS and is defined
as follows.

PS = {E ∈ E : `S E}. (1)

Consider a simple proof system system S1 with a language L = L{P, ⇒}, where
P is one argument connective. We take E = F , LA = {(A ⇒ A)}, and the set
of rules o inference R = {(r) B

PB }. We write our proof system as

S1 = (L{P, ⇒}, F , {(A⇒ A)}, (r)
B

PB
) (2)

where A,B are any formulas. Observe that even the system S1 has only one
axiom, it represents an infinite number of formulas. We call such axiom an
axiom schema.

Consider now a system S2

S2 = (L{P,⇒}, F , {(a⇒ a)}, (r)
B

PB
), (3)

where a ∈ V AR is any variable (atomic formula) and B ∈ F is any formula.
Observe that the system S2 also has only one axiom similar to the axiom of S1,
both systems have the same rule of inference but they are very different proof
systems. For example a formula ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))) is an
axiom of the system S1 for A = (Pa ⇒ (b ⇒ c) but is not an axiom of the
system S2, as this systems permits axioms of the form: (a ⇒ a) for a being a
propositional variable.

A formal proof in a system S carries, as the proof system S does, a semantical
meaning but it is nevertheless purely syntactical in its nature. The rules of

6

inference of a proof system define only how to transform strings of symbols of
our language into another string of symbols. The definition of a formal proof
says that in order to prove an expression E of a system one has to construct of
s sequence of proper transformations as defined by the rules of inference. Here
some examples of provable formulas and their formal proofs in both S1 and S2

systems. Observe that we do not know the semantics for these systems.

Exercise 1 Let S1, S2 be proof systems (2), (3), respectively. Show that

`S1((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)))

`S1P (a⇒ a), `S2P (a⇒ a), `S1PP (a⇒ a), `S2PP (a⇒ a)

`S1
PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)).

Solution Formal proof of ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))) in S1 is one
element sequence A1 = ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c)). It is a proof
because the formula A1 an axiom of S1. It is not a proof in S2.

The formulas P (a ⇒ a), and PP (a ⇒ a) are provable formulas of both proof
systems. The formal proofs in both systems of above formulas are identical and
are as follows.

Formal proof of P (a⇒ a) in S1 and S2 is a sequence A1, A2 for

A1 = (a⇒ a), A2 = P (a⇒ a).
axiom rule (r) application

for B = (a⇒ a)

Formal proof of PP (a⇒ a) in S1 and S2 is a sequence A1, A2, A3 for

A1 = (a⇒ a), A2 = P (a⇒ a), A3 = PP (a⇒ a).
axiom rule (r) application rule (r) application

for B = (a⇒ a) for B = P (a⇒ a)

Formal proof of PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))) in S1 is a sequence
A1, A2, A3, A4 for

A1 = ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),
axiom

A2 = P ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),
rule (r) application

A3 = PP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))),
rule (r) application

A4 = PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).
rule (r) application

7

It is not a proof in S2. Moreover

6 `S2
PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c)).

Observe that even if the set of axioms and the inference rules of the proof system
are primitively recursive it doesn’t mean that the notion of ”provable expres-
sion” is also primitively recursive, i.e. that there always will be an effective,
mechanical method (effective procedure) for determining, given any expression
A of the system, whether there is a proof of A. We define the following notions

Definition 5 (Decidable system)

A proof system S = (L, E , LA,R) for which there is an effective decision
procedure for determining, for any expression E of the system, whether there is,
or there is no proof of E in S is called a decidable proof system, otherwise
it is called undecidable.

Observe that the above notion of decidability of the system S does not require
us to find a proof, it requires only a mechanical procedure of deciding whether
there is, or there is no such a proof. We hence introduce a following notion.

Definition 6 (Syntactic Decidability)

A proof system S = (L, E , LA,R) for which there is an effective mechanical,
procedure that finds (generates) a formal proof of any E in S, if it exists, is called
syntactically semi- decidable. If additionally there is an effective method of
deciding that if a proof of E in S not found, it does not exist, the system S is
called syntactically decidable. Otherwise S is syntactically undecidable.

The existence of prove systems for classical logic and mathematics that are
syntactically decidable or syntactically semi-decidable was stated (in a differ-
ent form) by German mathematician David Hilbert in early 1900 as a part of
what is called Hilbert’s program. The main goal of Hilbert’s program was to
provide secure foundations for all mathematics. In particular it addressed the
problem of decidability; it said that here should be an algorithm for deciding
the truth or falsity of any mathematical statement. Moreover, it should use
only ”finitistic” reasoning methods. Kurt Gdel showed in 1931 that most of the
goals of Hilbert’s program were impossible to achieve, at least if interpreted in
the most obvious way. Nevertheless, Gerhard Gentzen in his work published in
1934/1935 gave a positive answer to existence of syntactical decidability. He
invented proof systems for classical and intiutionistic logics, now called Gentzen
style formalizations. They formed a basis for development of Automated The-
orem Proving area of mathematics and computer science. We will study the
Gentzen style formalizations in chapter ??.

Definition 7 (Automated Systems)

8

A proof system S = (L, E , LA,R) that is proven to be syntactically decidable
or semi-decidable is called an automated proof systems.

Automated proof systems are also called automated theorem proving systems,
Gentzen style formalizations, syntactically decidable systems and and we use all
of these terms interchangeably.

Example 1 Any complete Hilbert style proof system for classical propositional
logic is an example of a decidable, but not syntactically decidable proof system.
We conclude its decidability from the Completeness Theorem (to be proved in
next chapter) and the decidability of the notion of classical tautology (proved in
chapter 3).

Example 2 The Gentzen style proof systems for classical and intuiionistic propo-
sitional logics presented in chapter ??, are examples of proof systems that are
of both decidable and syntactically decidable.

W are going to prove now, as a simple example t the following

Fact 1

The systems proof systems S1 and S2 defined by (2) and (3), respectively are
syntactically decidable.

Proof Let’s now to think how we can search for a proof in S2 of a formula

PP ((Pa⇒ (b⇒ c)).

If PP ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))) had the proof, the only last step
in this proof would have been the application of the rule (r) to the formula
PP ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))). This formula, in turn, if it had
the proof, the only last step in its proof would have been the application of
the rule r to the formula P ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))). And again,
this one could be obtained only from the formula ((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒
(b ⇒ c))) by the virtue of the rule r. Here the search process stops; the rule r
puts P in front of the formulas, hence couldn’t be applied here. The formula
((Pa ⇒ (b ⇒ c)) ⇒ (Pa ⇒ (b ⇒ c))) isn’t an axiom of S2, what means that
the only possible way of finding the proof has failed, i.e. we have proved that
6`S1

PPP ((Pa⇒ (b⇒ c))⇒ (Pa⇒ (b⇒ c))).

The above example of proof search in S2 defines the following an effective,
automatic Procedure S1, S2 of searching for a proof of our formula in both
our proof systems. If the search ends with an axiom, we have a proof, if it
doesn’t end with an axiom it means that the proof does not exists. We have
described it, as an example, for one particular formula. It can be easily extended
to any formula A of L{P,⇒} as follows.

9

Procedure S1, S2

Step : Check the main connective of A.

If main connective is P , it means that A was obtained by the rule r.

Erase the main connective P .

Repeat until no P left.

If the main connective is ⇒,check if a formula A is an axiom.

If it is an axiom , STOP and YES, we have a proof.

If it is not an axiom , STOP and NO, proof does not exist.

It is an effective, automatic procedure of searching for a proof of our formula in
both our proof systems. This ends the proof .

Observe also, that the systems S1 and S2 are such that we can easily describe a
general form of their provable formulas defined by (1) as PS = {E ∈ E : `S E}.
Namely we have the following.

PS1
= {Pn(A⇒ A) : n ∈ N, A ∈ F},

PS2 = {Pn(a⇒ a) : n ∈ N, a ∈ V AR},

where Pn denotes n-iteration of P for n ≥ 1 and P 0 denotes absence of P.

Obviously we have that PS1
6= PS2

, and PS2
⊆ PS1

.

The proof systems S1 and S2 are very simple, indeed. Here is an example of
another two, similar but slightly more complex proof systems.

Consider two proof systems S3 and S4 of the language L{∪,¬} with the set of
expressions E = F and is defined as follows.

S3 = (L{∪,¬}, F , {(A∪¬A)}, (r)
(A ∪ ¬A)

(B ∪ (A ∪ ¬A))
, for any A,B ∈ F). (4)

S4 = (L{∪,¬}, F , {(A∪¬A)}, (r)
B

(B ∪ (A ∪ ¬A))
, for any A,B ∈ F), (5)

Exercise 2 Given proof systems S3 and S4 defined by (4), (5), respectively.

1. Describe the sets PS3 ,PS4 of provable formulas of S3 and S4.

2. Decide whether is it true/ false that PS3
= PS4

. If yes, prove it, if not, give
an example of a formula A such that A ∈ PS4

and A 6∈ PS3
, or vice versa.

10

Solution 1.
Let’s first describe the set of provable formulas of both systems. Consider proof
system S3. Obviously, for any formula A ∈ F , (A ∪ ¬A), as it is the axiom. It
constitutes a proof of length 1 A1 = (A ∪ ¬A)and we have that

`S3
(A ∪ ¬A).

One application of the inference rule (r) to axiom(A ∪ ¬A) gives us a proof
A1 = (A ∪ ¬A), A2 = ((A ∪ ¬A) ∪ (A ∪ ¬A)), and hence

`S3((A ∪ ¬A) ∪ (A ∪ ¬A)).

The application of the rule (r) to the already proven above formula A2 give us
the proof A1 = (A∪¬A), A2 = ((A∪¬A)∪ (A∪¬A)), A3 = (((A∪¬A)∪ (A∪
¬A)) ∪ (A ∪ ¬A)), and

`S3
(((A ∪ ¬A) ∪ (A ∪ ¬A)) ∪ (A ∪ ¬A)).

It is easy to see that all provable formulas of S3 will be of the form of the proper
disjunction of the axiom of S3, what we denote as follows:

PS3
= {

⋃
n∈N

(A ∪ ¬A)n : A ∈ F}, (6)

where (A ∪ ¬A)n denotes a disjunction of n formulas of the form (A ∪ ¬A)
defined recursively as follows. (A ∪ ¬A)0 = (A ∪ ¬A), (A ∪ ¬A)n+1 = ((A ∪
¬A)n ∪ (A ∪ ¬A)).

Consider now system S4. Obviously, as in the case of S4, `S4(A ∪ ¬A). One
application of the inference rule to the axiom gives us the proof A1 = (A ∪
¬A), A2 = (B ∪ (A ∪ ¬A)) and we have that

`S4
(B ∪ (A ∪ ¬A)), (7)

where B can be any formula from F .

The rule (r) can’t be, by its definition, applied to already proved B∪ (A∪¬A)).
We can continue with the proof A1, A2 by constructing for example a proof
A1, A2, A3, A4 by inserting axiom (C ∪ ¬C) (or axiom (A ∪ ¬A), if we wish
as A3 step of the proof. We have to remember that the definition 4 of the
formal proof allows us to insert an axiom in any place within the proof. A1 =
(A ∪ ¬A), A2 = (B ∪ (A ∪ ¬A)), A3 = (C ∪ ¬C), A4 = (A ∪ (C ∪ ¬C)) and
hence

`S4
(A ∪ (C ∪ ¬C)), `S4

(B ∪ (A ∪ ¬A)),`S4
(C ∪ (B ∪ ¬B)),etc...

Multiple application of the rule (r) in S4 means its application to multiple forms
of the axiom. Finally it is clear that we can only construct formal proofs of all
possible formulas of the form (B ∪ (A ∪ ¬A)), and of course of a form of any

11

axiom (proofs of the length 1) (A ∪ ¬A) for A,B being all possible formulas.
Remark that by saying A,B ∈ F we do not say that A 6= B, that we do not
exclude that case A = B. In particular case we have that

`S4(A ∪ (A ∪ ¬A)), `S4(B ∪ (B ∪ ¬B)),`S4(C ∪ (C ∪ ¬C)),etc...

Hence

PS4
= {(B ∪ (A ∪ ¬A)) : A,B ∈ F} ∪ {(A ∪ ¬A) : A ∈ F}. (8)

Solution 2.
We prove now that PS3 ⊆ PS4 . Let D ∈ PS3 . By (6) D =

⋃
n∈N (A∪¬A)n. Ob-

serve that by definition D =
⋃

n∈N (A∪¬A)n = (
⋃

n∈N (A∪¬A)n−1∪ (A∪¬A))
and

⋃
n∈N (A ∪ ¬A)n−1 is a formula of L{∪,¬}. We can denote it by B. We

have proved in (7) that for any B ∈ F , `S4
(B ∪ (A ∪ ¬A)). But by definition

D = (B ∪ (A ∪ ¬A)), hence we proved that D ∈ PS4
.This ends the proof.

Consider a formula ((a ∪ ¬b) ∪ (a ∪ ¬a)) of L{∪,¬}. It has a following formal
proof A1, A2 in S4.

A1 = (a ∪ ¬a), A2 = ((a ∪ ¬b) ∪ (a ∪ ¬a)).
axiom for A=a rule (r) application

for B = (a ∪ ¬b)

This proves that ((a∪¬b)∪ (a∪¬a)) ∈ PS4
. Obviously 6 `S3

((a∪¬b)∪ (a∪¬a))
and ((a∪¬b)∪ (a∪¬a)) 6∈ PS3

. We have proved that the proof systems S3 and
S4 defined by (4), (5) are such that PS3

⊆ PS4
and PS3

6= PS4
.

Consider now a following proof system S5.

S5 = (L{⇒,∪,¬}, F , {(A⇒ (A ∪B))}, {(r1), (r2)}) (9)

where the rules of inference are defined as follows.

(r1)
A ;B

(A ∪ ¬B)
, (r2)

A ; (A ∪B)

B
.

Exercise 3

Given proof systems S5 defined by (9).

1. Find a formal proof of a formula ¬(A ⇒ (A ∪ B)) in S5, i.e. show that
`S5
¬(A⇒ (A ∪B)).

2. Find a formal proof of a formula ¬((a ∪ ¬b)⇒ ((a ∪ ¬b) ∪ (a ∪ ¬a))).

Solution

12

1. We construct a formal proof B1, B2, B3, B4 of the formula ¬(A⇒ (A∪B))
as follows. We write comments next to each step of the proof.

B1 = (A⇒ (A ∪B)) axiom, B2 = (A⇒ (A ∪B)) axiom,

B3 = ((A⇒ (A ∪B)) ∪ ¬(A⇒ (A ∪B))) rule (r1) application to B1 and B2,

B4 = ¬(A⇒ (A ∪B)) rule (r2) application to B3

for A = (A⇒ (A ∪B)) and B = ¬(A⇒ (A ∪B)).

2. We construct a formal proof B1, B2, B3, B4 of the formula ¬((a ∪ ¬b) ⇒
((a ∪ ¬b) ∪ (a ∪ ¬a))) as follows.

B1 = ((a∪¬b)⇒ ((a∪¬b)∪(a∪¬a))) axiom for A = (a∪¬b) and B = (a∪¬a),

B2 = ((a∪¬b)⇒ ((a∪¬b)∪(a∪¬a))) axiom for A = (a∪¬b) and B = (a∪¬a),

B3 = (((a ∪ ¬b)⇒ ((a ∪ ¬b) ∪ (a ∪ ¬a))) ∪ ¬((a ∪ ¬b)⇒ ((a ∪ ¬b) ∪ (a ∪ ¬a))))
rule (r1) application to B1 and B2,

B4 = ¬((a ∪ ¬b)⇒ ((a ∪ ¬b) ∪ (a ∪ ¬a))) rule (r2) application to B3

for A = ((a ∪ ¬b) ⇒ ((a ∪ ¬b) ∪ (a ∪ ¬a))) and B = ¬((a ∪ ¬b) ⇒ ((a ∪ ¬b) ∪
(a ∪ ¬a))).

Observation 1 Observe that the formula ¬((a∪¬b)⇒ ((a∪¬b)∪(a∪¬a))) is a
particular case of the formula ¬(A⇒ (A∪B)) for A = (a∪¬b) and B = (a∪¬a)
and its proof is just a particular case of the proof constructed in case 1.

We wrote down independently a complicated proof of the particular case to
make reader aware of a need of generalizing particular formulas, if it possible,
and writing simpler proofs for the general case instead of the perticular.

Consequence Operation

Given a proof system S = (L, E , LA,R). While proving expressions we often
use some extra information available, besides the axioms of the proof system.
This extra information is called hypotheses in the proof.

Let Γ ⊆ E be a set expressions called hypotheses. A proof from a set Γ of
hypothesis of an expression E ∈ E in S = (L, LA,R) is a formal proof in S,
where the expressions from Γ are treated as additional hypothesis added to the
set LA of the logical axioms of the system S. We define it formally as follows.

Definition 8 (Proof from Hypotheses)

13

Given a proof system S = (L, E , LA,R) and let Γ be any set of expressions of
S, i.e. let Γ ⊆ E.

A proof of an expression E ∈ from the set Γ of expressions is a sequence

E1, E2, . . . En

of expressions, such that

E1 ∈ LA ∪ Γ, En = E

and for each i, 1 < i ≤ n, either Ei ∈ LA ∪ Γ or Ei is a direct consequence of
some of the preceding expressions in the sequence E1, E2, . . . En by virtue of
one of the rules of inference from R.

We write
Γ `S E

to denote that the expression E has a proof from Γ in S and Γ ` E, when the
system S is fixed.

When the set of hypothesis Γ is a finite set and Γ = {B1, B2, ..., Bn}, then we
write

B1, B2, ..., Bn `S E

instead of {B1, B2, ..., Bn} `S E. The case when Γ is an empty set i.e. when
Γ = ∅ is a special one. By the definition of a proof of E from Γ, ∅ ` E means
that in the proof of E only logical axioms LA of S were used. We hence write
it as we did before

`S E

to denote that E has a proof from the empty set Γ. The set of all expressions
provable from Γ (and logical axioms LA in S is denoted by PS(Γ), i.e.

PS(Γ) = {E ∈ E : Γ `S E}. (10)

When discussing properties of provability in proof systems we often use a notion
of a consequence operation. In order to follow this tradition we call provable
expressions from Γ in S consequences of Γ. The set of all expressions provable
is then called the set of all consequences from Γ. We observe that when talking
about consequences of Γ in S, we define in fact a function which to every set
Γ ⊆ E assigns a set of all its consequences. We denote this function by CnS

and adopt the following definition.

Definition 9 (Consequence)

Given a proof system S = (L, E , LA,R). Any function CnS : 2E −→ 2E

such that for every Γ ∈ 2E ,

CnS(Γ) = {E ∈ E : Γ `S E} (11)

is called a consequence determined by S.

14

Directly from definition 14 and (10) we have the following.

Fact 2 For any proof system S = (L, E , LA,R).

PS(Γ) = CnS(Γ). (12)

It proves that the notions of provability from a set Γ in S and consequence
determined by S coincide . It means that we can, and we often use in the
literature the both terms interchangeably.

The definition 14 does do more then just re-naming ”provability” by ”conse-
quence”. We are going to prove now that the consequence CnS determined
by S a special (an important) case of a notion a classic consequence operation
as defined by Alfred Tarski in 1930 as a general model of deductive reasoning.
Tarski definition is a formalization of the intuitive concept of the deduction as a
consequence, and therefore it has all the properties which our intuition attribute
to this notion. Here is the definition.

Definition 10 (Tarski)

By a consequence operation in a formal language L = (A,F) we under-
stand any mapping C : 2F −→ 2F satisfying the following conditions (t1)
- (t3) expressing properties of reflexivity, monotonicity, and transitivity of the
consequence.

For any sets F, F0, F1, F2, F3 ∈ 2F ,

(t1) F ⊆ C(F) reflexivity,

(t2) if F1 ⊆ F2, then C(F1) ⊆ C(F2), monotonicity.

(t3) if F1 ⊆ C(F2) and F2 ⊆ C(F3) , then F1 ⊆ C(F3), transitivity.

We say that the consequence operation C has a finite character if additionally
it satisfies the following condition t4.

(t4) if a formula B ∈ C(F), then there exists a finite set F0 ⊆ F , such
that B ∈ C(F0). finiteness.

The monotonicity condition (t2) and transitivity condition (t3) are often re-
placed by the following conditions (t2’), (t3’), respectively.

For any formula B ∈ F , any any sets F, F ′,∈ 2F ,

(t2′) if B ∈ C(F), then B ∈ C(F ∪ F ′), (13)

(t3′) C(F) = C(C(F)). (14)

We express the correctness of the replacement conditions (13) and (14) in a form
of a following theorem.

15

Theorem 1

The Tarski definition 10 is equivalent with definitions where one, or both condi-
tions (t2), (t3) are replaced respectively by conditions (t2’), (t3’)given by equa-
tions (13) and (14).

Proof We prove the equivalency of conditions (t1) - (t3) and (t1) - (t3’). We
leave the proof of the other equivalency to the reader.

Assume (t3). By substituting

F1 = C(C(F)), F2 = C(F), F3 = F

in (t3) we obtain
C(C(F)) ⊆ C(F).

On the other hand, it follows from (t1) and (t2)

C(F) ⊆ C(C(F)),

which with the previous inclusion gives (t3’). Conversely, suppose that (t3’) is
satisfied. If F2 ⊆ C(F3), then by (t2) we obtain C(F2) ⊆ C(C(F3)). By (t3’)
C(C(F3)) = (C(F3), hence C(F2) ⊆ (C(F3) and we proved (t3).

The consequence operation provides a model describing what we intuitively call
a deduction. It formalizes the basic, intuitively obvious and accepted properties
of reasoning by which we obtain (deduce) new facts from already known, or as-
sumed. We hence use it to define, after Tarski, a following notion of a deductive
system.

Definition 11 (Deductive System)

Given a formal language L = (A,F) and a Tarski consequence C (definition
10). A system

D = (L,C)

is called a Tarski deductive system for the language L.

Tarski’s deductive system as a model of reasoning does not provide a method of
actually defining a consequence operation in the language L; it assumes that it is
given. We are going to prove now that our definition 14 of consequence operation
CnS determined by a proof system S is a Tarski consequence operation C in
the definition 10 sense. It justifies, together with Fact 2 the common use the
consequence notion when talking about provability. It means that each proof
system S provides a different example of a consequence operation. They are all
purely syntactic in nature and all defined by the notion of provability. Hence
each proof system can be treated and a syntactic Tarski deductive system from
definition 11.

16

Theorem 2

Given a proof system S = (L, E , LA,R). The consequence operation CnS is a
Tarski consequence C in the language L of the system S and the system

DS = (L, CnS)

is Tarski deductive system. We call it a syntactic deductive system deter-
mined by S. Moreover, the consequence operation CnS that has a finite char-
acter.

Proof
By definition 14, the consequence operation CnS : 2E −→ 2E is given by
a formula CnS(Γ) = {E ∈ E : Γ `S E}. We have to show that for any
Γ, Γ0, Γ1, Γ2, Γ3 ∈ 2F conditions (t1) - (t4) of the definition 14 hold. The
reflexivity condition (t1) becomes Γ ⊆ CnS(Γ). Let E ∈ Γ. The one element
sequence E is a proof of E from Γ, hence we proved that E ∈ C(Γ) and (t1)
holds. To prove the transitivity condition (t2) assume now that Γ1 ⊆ Γ2. Let
E ∈ CnS(Γ1). It means that Γ1`S E, i.e E has a formal proof from Γ1, but
Γ1 ⊆ Γ2, hence this proof also is a proof from Γ2, and E ∈ CnS(Γ2). This
proves that CnS(Γ1) ⊆ CnS(Γ2) and the condition (t2) holds. Let now E ∈ Γ1

and Γ1 ⊆ CnS(Γ2), so E ∈ CnS(Γ)2. Let E1, . . . , En be a formal proof of E
from Γ2. But Γ2 ⊆ CnS(Γ3). It means that any expression from Γ2 has a formal
proof from Γ3. In particular, all expression in the proof E1, . . . , En that belong
to Γ2 have their formal proofs from Γ3. Replacing all these expressions by their
proofs from Γ3 we obtain a proof of E from Γ3. This proves that Γ1 ⊆ CnSΓ3

and the transitivity condition (t3) holds. Let now E ∈ CnSΓ. This means that
E has a proof E1, . . . , En from Γ. The set Γ0 = {E1, . . . , En} is obviously a
finite subset of Γ and E ∈ CnSΓ0 and (t4) holds.

Non - Monotonic Logics
The Tarski definition 10 of a consequence models reasoning which is called after
its condition (t2) or (t2’) a monotonic reasoning. The monotonicity of reasoning
was, since antiquity is the the basic assumption while developing models for
classical and well established non-classical logics. Recently many of new non-
classical logics were developed and are being developed by computer scientists.
For example new modal logics of agents and temporal logics. Temporal logics
are essential in developing theory of programs. Nevertheless they all are built
following the Tarski definition of consequence and were and are called monotonic
logics. A new type of important

Non-Monotonic logics have been proposed at the beginning of the 80s. Histor-
ically the most important proposals are Non-monotonic logic, by McDermott
and Doyle, Default Logic, by Reiter, Circumscription, by McCarthy, and Au-
toepistemic logic, by Moore.

The term non-monotonic logic covers a family of formal frameworks devised
to capture and represent defeasible inference. It is an inference in which it

17

is possible to draw conclusions tentatively, reserving the right to retract them
in the light of further information. We included most standard examples in
Chapter 1, Introduction.

Non-monotonic logics describe commonsense reasoning which is neither a restric-
tion nor an extension of classical logic. Consequences of premises are drawn as
much due to the absence as to the presence of knowledge. When more knowledge
is acquired, conclusions previously drawn may have to be withdrawn because
the rules of inference that led to them no longer are active. Intelligent decision
makers use this form of commonsense reasoning to infer actions to be performed
from premises which cannot be made by classical logic inference, because they
simply have to make decisions whether or not there is enough information for
a classical logical deduction. Non-monotonic reasoning deals with the problem
of deriving plausible conclusions, but not infallible, from a knowledge base (a
set of formulas). Since the conclusions are not certain, it must be possible to
retract some of them if new information shows that they are wrong. Example:
let the KB contain: Typically birds fly. Penguins do not fly. Tweety is a bird. It
is plausible to conclude that Tweety flies. However if the following information
is added to KB Tweety is a penguin the previous conclusion must be retracted
and, instead, the new conclusion that Tweety does not fly will hold.

The statement ”typically A” can be read as: ”in the absence of information to
the contrary, assume A”. The problem is to define the precise meaning of ”in
the absence of information to the contrary”. The meaning could be: ”there is
nothing in KB that is inconsistent with assumption A”. Other interpretations
are possible Different interpretations give rise to different non-monotonic logics.

Formal Theories

Formal theories play crucial role in mathematics and were historically defined
for classical first order logic and consequently for other first and higher order
logics. They are routinely called first order theories. We will discuss them in
more detail in chapter ?? dealing formally with classical predicate logic. First
order theories are hence based on proof systems S with a predicate (first order)
language L. We will call them for short first order proof systems.

We can and we sometimes consider formal theories based on propositional log-
ics, i.e. based on proof systems with language L being propositional. We will
call them propositional theories.

Given a proof system S = (L, E , LA, R). We build (define) a formal theory
based on S as follows.

1. We select a certain finite subset SA of expressions of S, disjoint with the
logical axioms LA of S, i.e. such that LA∩ SA = ∅.. The set SA is called a set
of specific axioms of the formal theory based on S.

18

2. We use set SA of specific axioms to define a language

[LSA, (15)

called a language of the formal theory. Here we have two cases.

c1. S is a first order proof system, i.e. L of S is a predicate language. We
define the language LSA by restricting the sets of constant, functional, predicate
symbols of L to constant, functional, predicate symbols appearing in the set SA
of specific axioms. Both languages LSA and L share the same set of propositional
connectives.

c2. S is a propositional proof system, i.e. L of S is a propositional language.
LSA is defined by restricting L to connectives appearing in the set SA.

Definition 12 (Formal Theory)

The system
T = (L, E , LA, SA, R) (16)

is called a formal theory based on a proof system S.

The set SA of the set of specific axioms of T . The language LSA defined by
(15) is called the language of the theory T .

The set ESA of all expressions of the language LSA provable from the set specific
axioms SA (and logical axioms LA) i.e. the set

T(SA) = {E ∈ ESA : SA `S E } (17)

is called the set of all theorems of the theory T .

If the set SA of specific axioms of T is empty, then the theory T is, by definition,
identified with the system S, i.e. T = S = (L, E , LA, R).

Definition 13 (Consistent Theory)

A theory T = (L, E , LA, SA, R) is consistent if there exists an expression
E ∈ ESA such that E 6∈ T(SA), i.e. such that

SA 6 `S E;

otherwise the theory T is inconsistent.

Observe that the definition 13 has purely syntactic meaning. It also reflexes
our intuition what proper provability should mean. it says that a formal the-
ory T based on a proof system S is consistent only when it does not prove all
expressions (formulas in particular cases) of LSA. The theory T such that it

19

proves everything stated in LSA obviously should be, and its defined as incon-
sistent. In particular, we have the following syntactic definition of consistency-
inconsistency for any proof system S.

Definition 14 (Syntactic Consistency)

A proof system S = (L, E , LA, R) is consistent if there exists E ∈ E such
that E 6∈ PS, i.e. such that 6 `S E; otherwise S is inconsistent.

2 Semantics

We define formally a semantics for a given proof system S = (L, E , LA,R) by
specifying the semantic links of all its components as follows.

Semantic Link1: Language L

The language L of S can be propositional or predicate. Let denote my M a
semantic for L. We call it, for short, a semantics for the proof system S. The
semantics M can be a propositional, a predicate, extensional, or not extensional.
We use M as a general symbol for a semantics.

Semantic Link 2: Set E of Expressons

We always have to extend a given semantics M of the language L to the set
of expressions E of the system S. We often do it by establishing a seman-
tic equivalency under semantics M of E and the set of all formulas F of L.
It means we prove that for a given semantics M under which we build our
proof system S, and for any expression E ∈ E there is a formula A ∈ F ,
such that E≡MA. For example, in the automated theorem proving system
RS presented in chapter ?? the expressions are finite sequences of formulas of
L = L¬,∩,∪,⇒. We extend our classical semantics for L to the set F∗ of all finite
sequences of formulas as follows: for any v : V AR −→ {F, T} and any ∆ ∈ F∗,
∆ = A1, A2, ..An, v∗(∆) = v∗(A1, A2, ..An) = v∗(A1) ∪ v∗(A2) ∪ ∪ v∗(An),
i.e. ∆ ≡ (A1 ∪A2 ∪ ...∪An). Sometimes, like in case of Resolution based proof
systems we have also to prove a semantic equivalency of a given formula A of L
with some set EA of expressions (sets of clauses) representing the formula A.

Semantic Link 3: Logical Axioms LA

Given a semantics M for L and its extension to the set E of all expressions. We
extend the notion of tautology to the set L of expressions and write |=M E to
denote that the expression E ∈ E is a tautology under semantics M. We denote

TM = {E ∈ E : |=M E}

20

While designing a proof system S we want the logical axioms LA to be a subset
of expressions that are tautologies of under the semantics M, i.e.

LA ⊆ TM.

We can, and we often do, invent proof systems with languages without yet es-
tablished semantics. In this case the logical axioms LA serve as description of
properties of tautologies under a future semantics yet to be built. We want to
choose as logical axioms of a proof system S are not only tautologies under an
already known semantics M, but they can also guide us how to define a seman-
tics when it is yet unknown.

Semantic Link 4: Rules of Inference R

We want the rules of inference r ∈ R to preserve truthfulness. Rules that
preserve the truthfulness are called sound under a given semantics M. We put
it in a general formal definition as follows.

Definition 15 (Sound Rule under M)

Given an inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C
.

We say that the rule (r) is sound under a semantics M if the following con-
dition holds for all M models M.

If M |=M {P1, P2, .Pm} then M |=M C. (18)

In case of a propositional language LCON and an extensional semantics M the
M models M are defined in terms of the truth assignment v : V AR −→ LV ,
where LV is the set of logical values with a distinguished value T. The general
definition 15 becomes a following definition for a propositional language L and
its extensional semantics M.

Definition 16 (Sound Propositional Rule under M)

Given a propositional language LCON and an extensional semantics M, an in-
ference rule of the form

(r)
P1 ; P2 ; ; Pm

C

is sound under the semantics M if the following condition holds for any v :
V AR −→ LV .

If v |=M {P1, P2, . . . , Pm}, then v |=M C. (19)

21

Observe that we can rewrite the condition (19) as follow.

If v∗(P1) = v∗(P2) = = v∗(Pm) = T, then v∗(C) = T. (20)

A rule of inference be sound under different semantics, but also rules of inference
can be sound under one semantics and not sound under the other.

Example 3 Given a propositional language L{¬,∪,⇒}. Consider two rules of
inference:

(r1)
(A⇒ B)

(B ⇒ (A⇒ B))
and (r2)

¬¬A
A

.

The rule (r1) is sound under classical, H and L semantics. The (r2) is sound
under classical and L semantics but is not sound under H semantics.

Consider the rule (r1).

Let v : V AR −→ {F, T} be any truth assignment, such that v∗((A⇒ B)) = T .
We use condition (20) and evaluate logical value of the conclusion under v as
follows. v∗((B ⇒ (A ⇒ B))) = v∗(B) ⇒ T = T for any formula B and
any value of v∗(B). This proves that v∗(B ⇒ (A ⇒ B)) = T and hence the
soundness of (r1). Consider now the H semantics. Let v : V AR −→ {F,⊥, T} be
any truth assignment, such that v |=M(A⇒ B), i.e. such that v∗((A⇒ B)) =
T . We evaluate under H, L semantics v∗((B ⇒ (A⇒ B))) = v∗(B)⇒ T . Now
v∗(B) can be T, F as in classical case, or v∗(B) =⊥. The case when v∗(B) is
T, F is like in classical semantics, so we have to check the case v∗(B) =⊥. But
in both H and L semantics ⊥⇒ T = T . This proves that (r1) is also sound
under H and L semantics.

Consider the rule (r2).

The rule (r2) is sound under classical and L by straightforward eveluation.
Assume now v : V AR −→ {F,⊥, T} be any truth assignment, such that
v |=M¬¬A, i.e. such that v∗(¬¬A) = T under H semantics. We have that
v∗(¬¬A) = ¬¬v∗(A) = T if and only if ¬v∗(A) = F if and only if v∗(A) = T or
v∗(A) =⊥. This proves that that it is possible to have v |=M¬¬A and v 6 |=MA,
i.e. that (r2) is not sound.

Definition 17 (Strongly Sound Rule under M)

An inference rule r ∈ R of the form

(r)
P1 ; P2 ; ; Pm

C

is strongly sound under a semantics M if the following condition holds for
all M models M,

M |=M {P1, P2, .Pm} if and only if M |=M C. (21)

22

In case of a propositional language LCON and an extensional semantics M the
condition (21) is as follows. For for any v : V AR −→ LV ,

v |=M {P1, P2, .Pm} if and only if v |=M C. (22)

We can, and we do state it informally as: ” an inference rule r ∈ R is strongly
sound when the conjunction of all its premisses is logically equivalent under a
semantics M to its conclusion”. We denote it informally as

P1 ∩ P2 ∩ . . . ∩ Pm ≡M C. (23)

Example 4

Given a propositional language L{¬,∪,⇒}. Consider two rules of inference:

(r1)
A ; B

(A ∪ ¬B)
and (r2)

A

¬¬A
.

Both rules (r1) and (r2) are sound under classical and H semantics. The rule
(r2) is strongly sound under classical semantics but is not strongly sound under
H semantics. The rule (r1) in not strongly sound under either semantics.

Consider (r1). Take (in shorthand notation) for A = T and B = T . We evaluate
v∗((A ∪ ¬B)) = T ∪ F = F in both semantics. This proves soundness of (r1)
under both semantics.. Take now v such that v(A) = T and v(B) = F , we get
v∗((A ∪ ¬B)) = F ∪ T = T .This proves that v |= (A ∪ ¬B) and v|=H(A ∪ ¬B).
Obviously v 6|= {A,B} and v 6 |=H{A,B}. this proves that (r1) in not strongly
sound under either semantics. Consider (r2). It is strongly sound under classical
semantic by (23) and the fact that A ≡ ¬¬A. (r2) is sound under H semantics.
Assume A = T . We evaluate (in shorthand notation) ¬¬A = ¬¬T = ¬F = T .
(r2) is not strongly sound under H semantics. Take v such that v∗(A) =⊥, then
v∗(¬¬A) = ¬¬ ⊥= ¬F = T . This proves that A 6≡H¬¬A and by (23) (r2) is
not strongly sound.

Now we are ready to define the notion of a sound and strongly sound proof
system. Strongly sound proof systems play a role in constructive proofs of
completeness theorem. This is why se introduced and singled them out here.

Definition 18 (Sound Proof System)

Given a proof system S = (L, E , LA,R).

We say that the proof system S is sound under a semantics M if the following
conditions hold.

1. LA ⊆ TM; 2. Each rule of inference r ∈ R is sound under M.

The proof system S is strongly sound under a semantics M if the condition
2. is replaced by the following condition 2’.

23

2’. Each rule of inference r ∈ R is strongly sound under M.

Example 5 The proof system S defined below as follows

S = (L{¬,⇒}, F , {(¬¬A⇒ A), (A⇒ (¬A⇒ B))}, R = {(r)})

where

(r)
(A⇒ B)

(B ⇒ (A⇒ B))
)

is sound, but not strongly sound under classical and L semantics . It is not
sound under H semantics.

1. Both axioms are basic classical tautologies. Hence to prove that first axiom
is L tautology we we have to verify only the case (shorthand notation) A =⊥.
But ¬¬ ⊥⇒⊥= ¬ ⊥⇒⊥=⊥⇒⊥= T and we proved |=L (¬¬A ⇒ A). Observe
that (A ⇒ (¬A ⇒ B)) =⊥ if and only if A = T and (¬A ⇒ B) =⊥ if and
only if (¬T ⇒ B) =⊥ if and only if (F ⇒ B) =⊥, what is impossible undef
L semantics. Hence |=L (A ⇒ (¬A ⇒ B)). We prove, as in example 3, that
6|=H (¬¬A⇒ A), S is not sound under H semantics.

2. Obviously (A ⇒ B) 6≡ (¬A ⇒ B), so also (A ⇒ B) 6≡L (¬A ⇒ B). This
proves by (23) that S in not strongly sound under neither classical not L se-
mantic. Nevertheless, it is sound under the both semantics by example 3.

Let PS be the set of all provable expressions of S, i.e. PS = {E ∈ E : `S E}.
Let TM be a set of all expressions of S that are tautologies under a semantics
M, TM = {E ∈ E : |=M E}.

When we define (develop) a proof system S our first goal is to make sure that
it a ”sound” one, i.e. that all we prove in it is true (with respect to a given
semantics). Proving the following theorem establishes this goal.

Theorem 3 (Soundness Theorem)

Given a predicate proof system S and a semantics M.
The following holds.

PS ⊆ TM, (24)

i.e. for any E ∈ E, the following implication holds

if `S E then |=M E.

Proof We prove by Mathematical Induction over the length of a proof that if
S is sound as stated in the definition 18, the Soundness Theorem holds for S. It
means that in order to prove the Soundness Theorem (under semantics bf M)

24

for a proof system we have to verify the two conditions: 1. LA ⊆ TM and 2.
Each rule of inference r ∈ R is sound under M.

The next step in developing a logic is to answer next necessary and a difficult
question: Given a proof system S, about which we know that all it proves it
true (tautology)with respect to a given semantics. Can we prove all we know to
be true (all tautologies) with respect to the given semantics?

Theorem 4 (Completeness Theorem)

Given a predicate proof system S and a semantics M.
The following holds

PS = TM (25)

i.e. for any E ∈ E, the following holds

`S E if and only if |=M E.

The Completeness Theorem consists of two parts:

Part 1: Soundness Theorem: PS ⊆ TM.

Part 2: Completeness Part of the Completeness Theorem: TM ⊆ PS .

Proving the Soundness Theorem for S under a semantics M is usually a straight-
forward and not a very difficult task. Proving the Completeness Part of the
Completeness Theorem is always a crucial and very difficult task. There are
many methods and techniques for doing so, even for classical proof systems (log-
ics) alone. Non-classical logics often require new sometimes very sophisticated
methods. We will study two proofs of the Completeness Theorem for classical
propositional Hilbert style proof system in chapter ??, and a constructive proofs
for automated theorem proving systems for classical logic the chapter ??. We
prove provide the proofs of the Completeness Theorem for classical predicate
logic in chapter ?? (Hilbert style) and chapter ??(Gentzen style).

3 Exercises and Homework Problems

Exercise 4

Given a proof system:

S = (L{¬,⇒}, E = F LA = {(A⇒ A), (A⇒ (¬A⇒ B))}, (r)
(A⇒ B)

(B ⇒ (A⇒ B))
).

1. Prove that S is sound, but not strongly sound under classical semantics.

2. Prove that S is not sound under K semantics.

3. Write a formal proof in S with 2 applications of the rule (r).

25

Solution
Parts 1 and 2. In order to prove 1. and 2. we have to verify conditions 1., 2.
and bf 2.’ of definition 18. Observe that both axioms of S are basic classical
tautologies. Consider the rule of inference of S.

(r)
(A⇒ B)

(B ⇒ (A⇒ B))
.

Take any v such that v∗((A ⇒ B))) = T . We evaluate logical value of the
conclusion under the truth assignment v as follows.

v∗(B ⇒ (A⇒ B)) = v∗(B)⇒ T = T

for any B and any value of v∗(B). This proves that S is sound under classical
semantics. S is not strongly sound as (A⇒ B) 6≡ (B ⇒ (A⇒ B)).

System S is not sound under K semantics because axiom (A ⇒ A) is not a K
semantics tautology.

Part 3. There are many solutions, i.e. one can construct many forrmal proofs.
Here is one of them. For example, one of the formal proofs is a sequence
A1, A2, A3, where
A1 = (A⇒ A)
(Axiom)
A2 = (A⇒ (A⇒ A))
Rule (r) application 1 for A = A, B = A.
A3 = ((A⇒ A)⇒ (A⇒ (A⇒ A)))
Rule (r) application 2 for A = A,B = (A⇒ A).

Exercise 5

Prove, by constructing a formal proof that

`S ((¬A⇒ B)⇒ (A⇒ (¬A⇒ B))),

where S is the proof system from Exercise 4.

Solution
Required formal proof is a sequence A1, A2, where
A1 = (A⇒ (¬A⇒ B))
Axiom
A2 = ((¬A⇒ B)⇒ (A⇒ (¬A⇒ B)))
Rule (r) application for A = A,B = (¬A⇒ B).

Observe that we needed only one application of the rule (r). One more appli-
cation of the rule (r) to A2 gives another solution to Exercise 4, namely a proof
A1, A2, A3 for A1, A2 defined above and
A3 = ((A⇒ (¬A⇒ B))⇒ (¬A⇒ B)⇒ (A⇒ (¬A⇒ B)))
Rule (r) application for A = (¬A⇒ B) and B = (A⇒ (¬A⇒ B)).

26

Exercise 6

Given a proof system:

S = (L{∪,⇒}, F , LA = {A1, A2}, (r)
(A⇒ B)

(A⇒ (A⇒ B))
),

where A1 = (A⇒ (A ∪B)), A2 = (A⇒ (B ⇒ A)).

1. Prove that S is sound under classical semantics and determine whether S it
is sound or not sound under K semantics.

2. Write a formal proof B1, B2, B3 in S with 2 applications of the rule (r) that
starts with axiom A1, i.e such that B1 = A1.

3. Write a formal proof B1, B2 in S with 1 application of the rule (r) that
starts with axiom A2, i.e such that A1 = A2.

Solution
Part 1. Axioms of S are basic classical tautologies. The proof (in shorthand
notation) of soundness of the rule of inference is the following. Assume (A ⇒
B) = T . Hence the logical value of conclusion is (A⇒ (A⇒ B)) = (A⇒ T) =
T for all A. S is not sound under K semantics. Let’s take truth assignment
such that A =⊥, B =⊥. The logical value of axiom A1 is as follows.
(A ⇒ (A ∪ B)) = (⊥⇒ (⊥ ∪ ⊥)) =⊥ and 6 |=K(A ⇒ (A ∪ B)). Observe that
the v such that A =⊥, B =⊥ is not the only v that makes A1 6= T , i.e. proves
that 6 |=K A1.
(A ⇒ (A ∪ B)) 6= T if and only if (A ⇒ (A ∪ B)) = F or (A ⇒ (A ∪ B)) =⊥.
The first case is impossible because A1 is a classical tautology. Consider the
second case. (A⇒ (A ∪B)) =⊥ in two cases. c1. A =⊥ and (A ∪B) = F , i.e.
(⊥ ∪B) = F , what is impossible. c2. A = T and (A∪B) =⊥, i.e. (T ∪B) =⊥,
what is impossible. c3. A =⊥ and (A∪B) =⊥, i.e. (⊥ ∪B) =⊥. This is possible
for B =⊥ or B = F , i.e when A =⊥, B =⊥ or A =⊥, B = F . From the above
observation we get a second solution. S is not sound under K semantics. Axiom
A1 is not K semantics tautology. There are exactly two truth assignments v,
such that v 6|= A1. One is, as defined in the first solution, namely A =⊥, B =⊥.
The second is A =⊥, B = F .

Part 2. The formal proof B1, B2, B3 is as follows.
B1 = (A⇒ (A ∪B))
Axiom
B2 = (A⇒ (A⇒ (A ∪B)))
Rule (r) application for A = A and B = (A ∪B)
B3 = (A⇒ (A⇒ (A⇒ (A ∪B))))
Rule (r) application for A = A and B = (A⇒ (A ∪B)).

Part 3. The formal proof B1, B2 is as follows.
B1 = (A⇒ (B ⇒ A))
Axiom

27

B2 = (A⇒ (A⇒ (B ⇒ A))).
Rule (r) application for A = A and B = (B ⇒ A).

Exercise 7

Let S be the following proof system:

S = (L{⇒,∪,¬}, F , A1, (r1), (r2)),

where the logical axiom A1 is: A1 = (A⇒ (A ∪B)),

Rules of inference (r1), (r2) are:

(r1)
A ;B

(A ∪ ¬B)
, (r2)

A ; (A ∪B)

B
.

1. Verify whether S is sound/not sound under classical semantics.

2. Find a formal proof of ¬(A⇒ (A ∪B)) in S, ie. show that

`S ¬(A⇒ (A ∪B)).

3. Does `S ¬(A⇒ (A ∪B)) prove that |= ¬(A⇒ (A ∪B))?

Solution
Part 1. The system is not sound. Take any v such that v∗(A) = T and
v∗(B) = F . The premiss (A∪B of the rule (r2) is T under v, and the conclusion
under v is v∗(B) = F .

Part 2. The proof of ¬(A⇒ (A ∪B)) is as follows.
B1: (A⇒ (A ∪B)),
axiom
B2: (A⇒ (A ∪B)),
axiom
B3: ((A⇒ (A ∪B)) ∪ ¬(A⇒ (A ∪B))),
rule (r1) application to B1 and B2

B4: ¬(A⇒ (A ∪B)),
rule (r2) application to B1 and B3).

Part 3. System S is not sound, so existence of a proof does not guarantee that
what we proved is a tautology. Moreover, the proof of ¬(A ⇒ (A ∪ B)) used
rule (r2) that is not sound.

Exercise 8

Create a 3 valued extensional semantics M for the language
L{¬, L, ∪, ⇒} by defining the connectives ¬, ∪, ⇒ on a set {F,⊥, T} of logical
values. You must follow the following assumptions a1, a2.

28

a1 The third logical value value is intermediate between truth and falsity, i.e.
the set of logical values is ordered as follows: F <⊥< T.
a2 The value T is the designated value. The semantics has to model a situation
in which one ”likes” only truth; i.e. the connective L must be such that LT = T ,
L ⊥= F, and LF = F . The connectives ¬, ∪, ⇒ can be defined as you wish,
but you have to define them in such a way to make sure that

|=M (LA ∪ ¬LA).

Solution
Here is a simple M semantics. We define the logical connectives by writing
functions defining connectives in form of the truth tables.

M Semantics

L F ⊥ T
F F T

¬ F ⊥ T
T F F

∩ F ⊥ T
F F F F
⊥ F ⊥ ⊥
T F ⊥ T

∪ F ⊥ T
F F ⊥ T
⊥ ⊥ T T
T T T T

⇒ F ⊥ T
F T T T
⊥ T ⊥ T
T F F T

We verify whether the condition s3 is satisfied, i.e. whether |=LK (LA∪¬LA)
by simple evaluation. Let v : V AR −→ {F,⊥, T} be any truth assignment. For
any formula A, v∗(A) ∈ {F,⊥, T} and LF ∪¬LF = LF ∪¬LF = F ∪¬F ∪T =
T, L ⊥ ∪¬L ⊥= F ∪ ¬F = F ∪ T = T, LT ∪ ¬LT = T ∪ ¬T = F ∪ T = T.

We verify whether |=M (LA ∪ ¬LA) by simple evaluation. Let v : V AR −→
{F,⊥, T} be any truth assignment. For any formula A, v∗(A) ∈ {F,⊥, T} and
LF ∪¬LF = LF ∪¬LF = F ∪¬F ∪ T = T, L ⊥ ∪¬L ⊥= F ∪¬F = F ∪ T =
T, LT ∪ ¬LT = T ∪ ¬T = F ∪ T = T.

Exercise 9

Let S be the following proof system

S = (L{¬,L,∪,⇒}, F , {A1, A2}, {(r1), (r2)})

where the logical axioms A1, A2 and rules of inference (r1), (r2) defined for any
formulas A,B ∈ F as follows.

A1 (LA ∪ ¬LA),
A2 (A⇒ LA),

(r1)
A ;B

(A ∪B)
, (r2)

A

L(A⇒ B)
.

29

1. Show, by constructing a proper formal proof that

`S ((Lb ∪ ¬Lb) ∪ L((La ∪ ¬La)⇒ b))).

Please, write comments how each step of the proof was obtained

2. Verify whether the system S is M-sound funder the semantics M you have
developed in Exercise 8. You can use shorthand notation.

3. If the system S is not sound/ sound under your semantics M then re-
define the connectives in a way that such obtained new semantics N would make
S sound/not sound

Solution
Part 1. Here is the formal proof B1, B2, B3, B4.

B1: (La ∪ ¬La), axiom A1 for A = a,
B2: L((La ∪ ¬La)⇒ b), rule (r2) for B = b applied to B1,
B3: (Lb ∪ ¬LAb), axiom A1 for A= b,
B4: ((Lb ∪ ¬Lb) ∪ L((La ∪ ¬La)⇒ b)), rule (r1) applied to B3 and B2.

Part 2. Observe that both logical axioms of S are M tautologies. A1 is M
tautology by definition of the semantics, A2 is M tautology by direct evaluation.
Rule (r1) is sound because when A = T and B = T we get A∪B = T ∪T = T .
Rule (r2) is not sound because when A = T and B = F (or B =⊥) we get
L(A⇒ B) = L(T ⇒ F) = LF = F (or L(T ⇒⊥) = L ⊥= F).

Part 3. In order to make the rule (r2) sound while preserving the soundness
of axioms A1, A2 we have to modify only the definition of implication. Here is
the N semantics implication

⇒ F ⊥ T
F T T T
⊥ T ⊥ T
T T T T

Observe that it would be hard to convince anybody to use our sound proof
system S, as it would be hard to convince anybody to adopt our N semantics.

Homework Problems

1. Given a proof system S = (L{∪,⇒}, F , LA = {A1, A2}, (r) (A⇒B)
(A⇒(A⇒B))),

where A1 = (A⇒ (A∪B)), A2 = (A⇒ (B ⇒ A)). Prove, by construct-
ing a formal proof in S that `S (A⇒ (A⇒ (A⇒ (A⇒ A)))).

Does it prove that |= (A⇒ (A⇒ (A⇒ (A⇒ A)))).

30

2. Given a proof system: S = (L{¬,⇒}, E = F LA = {(A ⇒ A), (A ⇒
(¬A⇒ B))}, (r) (A⇒B)

(B⇒(A⇒B))).

(i) Prove that S is sound under classical semantics.

(ii) Prove that S is not sound under K semantics.

(iii) Write a formal proof in S with 3 applications of the rule (r).

(iv) Prove, by constructing a formal proof that `S ((¬A ⇒ B) ⇒ (A ⇒
(¬A⇒ B))).

3. Given a proof system: S = (L{∪,⇒}, E = F LA = {A1, A2}, R =
{(r)}), where A1 = (A ⇒ (A ∪ B)), A2 = (A ⇒ (B ⇒ A)) and

(r) (A⇒B)
(A⇒(A⇒B)) .

(i) Prove that S is sound under classical semantics.

(ii) Determine whether S is sound or not sound under L semantics.

(iii) Write a formal proof in S with 3 applications of the rule (r) that
starts with axiom A1.

(iv) Does it prove/ that |=L A for a formula A obtained in (iii).

(v) Prove, by constructing a formal proof in S that `S (A⇒ (A⇒ (A⇒
(A ⇒ A)))). Does it prove (and why) that |= (A ⇒ (A ⇒ (A ⇒ (A ⇒
A)))).

4. S is the following proof system: S = (L{⇒,∪,¬}, F , LA = {(A ⇒
(A ∪B))} (r1), (r2)), where (r1) A ;B

(A∪¬B) , (r2) A ;(A∪B)
B .

(i) Verify whether S is sound/not sound under classical semantics. (ii)
Find a formal proof of ¬(A ⇒ (A ∪ B)) in S, i. e. show that
`S ¬(A⇒ (A ∪B)).

(iii) Does above (ii) prove that |= ¬(A⇒ (A ∪B))?

5. By a m-valued semantics Sm, for a propositional language L = L{¬,∩,∪,⇒}
we understand any definition of of connectives ¬,∩,∪,⇒ as operations on
a set Lm = {l1, l2, ...lm} of logical values (for m ≥ 2).

We assume that l1 ≤ l2 ≤ ... ≤ lm, i.e. Lm is totally ordered by a
certain relation ≤ with l1, lm being smallest and greatest elements, re-
spectively. We denote l1 = F, lm = T and call them (total) False and
Truth, respectively. For example, when m = 2, L2 = {F, T}, F ≤ T .
Semantics S2 is called a classical semantics if the connectives are de-
fined as x ∪ y = max{x, y}, x ∩ y = min{x, y}, ¬T = F,¬F = T,
and x⇒ y = ¬x ∪ y, for any x, y ∈ L2.

Let V AR be a set of propositional variables of L and let Sm be any m-
valued semantics for L. A truth assignment v : V AR −→ Lm is called
a Sm model for a formula A of L if and only if v∗(A) = T and logical
value v∗(A) is evaluated accordingly to the semantics Sm. We denote is
symbolically as v|=Sm

A.

31

Let S = (L, F , {A1, A2, A3}, MP A ;(A⇒B)
B) be a proof system with

logical axioms:

A1: (A⇒ (B ⇒ A)),

A2: ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

A3: ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)).

(i) Prove that S is sound under S2 classical semantics.

(ii) Define your own S2 semantics under which S is not sound.

(iii) Define your own S4 semantics under which S is sound and other S4

semantics under which S is not sound.

(iv) Define your own Sn semantics such that S is sound for all for 2 ≤
n ≤ m.

(v) Show, by construction a formal proof, that `S (A⇒ A).

32

