CSE/MAT371 EQ1 SOLUTIONS Fall 2025 (10pts)

Please write carefully your solutions. NO PARTIAL CREDIT. Formulas must be fully correct for credit.

QUESTION 1 (4pts)

Solution

Write the following natural language statement:

From the fact that there is a blue bird we deduce that: it is not necessary that all natural numbers are even **OR** if it is possible that it is not true that all natural numbers are even, then it is not true that there is a blue bird.

in the following 2 ways.

- **1.** (2pts) As a formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$. Main connective is implication. Use Propositional Variables a, b, c for the consecutive statements, where
- a denotes statement: there is a blue bird;
- b denotes statement: it is necessary that all natural numbers are even,
- c denotes statement: it is possible that it is not true that all natural numbers are even

Formula $A_1 \in \mathcal{F}_1$ is:

$$(a \Rightarrow (\neg b \cup (c \Rightarrow \neg a)))$$

- **2.** (2pts) **Solution** As a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$. Use Propositional Variables a, b for consecutive statements, where
- a denotes statement: there is a blue bird,

b denotes statement: all natural numbers are even

Formula $A_2 \in \mathcal{F}_2$ is:

$$(a \Rightarrow (\neg \Box b \cup (\Diamond \neg b \Rightarrow \neg a)))$$

QUESTION 2 (1pts)

Given a language $\mathcal{L} = \mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \rightarrow\}}$ and a formula $A \in \mathcal{F}$

$$A: \quad (a \to (\neg \Box b \cup (\Diamond \neg a \to b)))$$

Solution

- 1. The degree of A is: 7
- **2.** Write all sub formulas of *A* of the degree 0, 1.
- $a, b, \Box b, \neg a$
- **3.** Write all sub formulas of *A* of the degree 2, 3.

$$\neg \Box b$$
, $\Diamond \neg a$, $(\Diamond \neg a \rightarrow b)$

4. Write your own, well formed formula of \mathcal{L} of a degree 5.

Here are some of mine - you have yours! $\neg\neg\Box(\Box a \to b)$, $\Diamond\Diamond\Diamond\Diamond\Diamond a$, $\Box(\neg a \to (\neg\neg b \cap c))$,

QUSTION 3 (2pts)

Circle formulas that **are** propositional **tautologies**. Write short justification for each. CAN'T USE Truth Tables Verification Method. Use known tautologies, contradictions and Logical Equivalences.

$$S_1 = \{ ((\neg c \cap c) \Rightarrow (\neg b \Rightarrow (d \cap e))), \quad ((a \cap \neg b) \cup ((a \cap \neg b) \Rightarrow (\neg d \cup e))), \quad (a \cup \neg b) \}$$

Hint: You know that for any formulas $A, B \in \mathcal{F}$, $(A \Rightarrow B) \equiv (\neg A \cup B)$.

Solution

$$\not\models (a \cup \neg b)$$
 as $(a \cup \neg b) = F$ for $a = F$, $b = T$

$$\models ((\neg c \cap c) \Rightarrow (\neg b \Rightarrow (d \cap e)))$$

because the formula $(\neg c \cap c)$ is a CONTRADICTION, i.e. always FALSE and by the definition of classical implication, $\models (A \Rightarrow B)$ for any $A, B \in \mathcal{F}$ when A is always false.

$$\models ((a \cap \neg b) \cup ((a \cap \neg b) \Rightarrow (\neg d \cup e)))$$

because the HINT we have that $((a \cap \neg b) \Rightarrow (\neg d \cup e)) \equiv (\neg (a \cap \neg b) \cup (\neg d \cup e))$

and we have that

$$((a \cap \neg b) \cup ((a \cap \neg b) \Rightarrow (\neg d \cup e))) \equiv ((a \cap \neg b) \cup (\neg (a \cap \neg b) \cup (\neg d \cup e))) \equiv (((a \cap \neg b) \cup \neg (a \cap \neg b)) \cup (\neg d \cup e))) = ((a \cap \neg b) \cup (\neg (a \cap \neg b) \cup ($$

and $\models ((a \cap \neg b) \cup \neg (a \cap \neg b))$ as a particular case of $\models (A \cup \neg A)$ for any $A \in \mathcal{F}$,

and for $A, B \in \mathcal{F}$ we have that a disjunction of a tautology A and any other formula B is a tautology.

Symbolically, $\models (A \cup B)$ when $\models A$ or $\models B$.

QUESTION 4 (4pts)

Here is a mathematical statement **S**:

For each integer $m \in \mathbb{Z}$ the following holds: If m > 5, then there is a natural number $n \in \mathbb{N}$, such that m + n > 5.

1. (1pts) Re-write S as a symbolic mathematical statement SM that only uses mathematical and logical symbols.

Solution S becomes a symbolic mathematical statement

SM:
$$\forall_{m \in \mathbb{Z}} (m > 5 \Rightarrow \exists_{n \in \mathbb{N}} m + n > 5)$$

Translate the symbolic statement **SM** into to a corresponding formula with **restricted quantifiers** using the following symbols.

Use Z(x) for $x \in Z$, N(y) for $y \in N$, a constant c for the number 5.

Write $G \in \mathbf{P}$ to denote the relation >, use $f \in \mathbf{F}$ to denote the function +.

Solution

2. (1pts) The statement m > 5 becomes an **atomic formula:** G(x, c).

The statement m + n > 5 becomes an **atomic formula** G(f(x,y), c).

4. (1pts) The symbolic mathematical statement SM becomes a restricted quantifiers formula:

$$\forall_{Z(x)}(G(x,c) \Rightarrow \exists_{N(y)}G(f(x,y),c))$$

5. (1pts) Translate your **restricted domain** quantifiers formula into a correct formula A of the predicate language \mathcal{L}

$$\forall x \, (\, Z(x) \, \Rightarrow (\, G(x,c) \Rightarrow \exists y \, (N(y) \cap G(f(x,y),c) \,) \,) \,)$$