Lecture MONDAY, WEDNESDAY 5:30pm - 6:50 pm
Location Mellville LIBR E4320
Professor Anita Wasilewska, e-mail: anita@cs.stonybrook.edu
 Please e-mail the professor with serious concerns only
Phone number 632 8458
Office Hours Monday, Wednesday 12:30 pm - 2:00 pm
 Wednesday 7:10 pm - 8:00 pm and by appointment.
Place New Comp. Science Building, Room 208, telephone: 2-8458
TA TBA
TA Office Hours TBA

Important There is no recitations, but I will cover solutions to homework assignments and held ques-
tions/answers sessions in class.

BOOKS
Main text: Anita Wasilewska, LOGICS for COMPUTER SCIENCE: Classical and Non-classical,
 Book under a contact with SPRINGER to appear in Spring 2019
 All book chapters, and lecture slides on are posted on the course webpage; please print them and bring
to class.
Additional texts:

vanced Books &Software, PACIFIC GROVE, CALIFORNIA

 Any Logic Textbook you find in the Library

Course Goal The goal of the course is to make student understand the need of, and to learn the
formality of logic. I will progress relatively slowly, making sure that the pace is appropriate for the
undergraduate class. But it doesn’t mean that you can just come to class and listen without doing
work at home!! You have to go over the text in proper chapters; in fact to go over and over again!
The book is written with students on my mind so that they can read and learn by themselves, even
before coming to class. For sure, it is essential to study after the class.
The book, and the course is developed to teach not only intuitive understanding of different logics,
but (and mainly) to teach formal logic as scientific subject, with its language, definitions and
problems.
Workload There will be 2 quizzes, Midterm, and Final examination

The consistency of your efforts and work is the most important for this course.

None of the grades will be curved.

Quizzes: total 50 pts There will be 2 quizzes (25 minutes), 25 points each.

NO MAKE-up for quizzes.

I might give some additional quizzes for extra credit

Quizzes will be given on Wednesdays - at the end of the class. I will answer students questions before distributing the Quiz.

Each quiz will consist of 2 -3 questions only: one will cover theoretical material, mainly definitions from the list of definitions you must know that I publish in Review Lectures on the course webpage, the others will be simple problems

Quizzes and Tests problems will MAINLY be taken from exercises and problems solved in the Book and very similar to Homework Assignments located at the end of the chapters of the book, or from Lectures, or from previous Quizzes and Tests as published on the course Webpage

Quizzes and Tests are closed book (and cell phones) examinations.

Midterm (75pts) Midterm will covers material from Q1 and material covered after Q1 in class before Midterm

Final (75pts) Final will cover mainly material covered after Midterm including material from Q2 and covered after Q2

Extra Credit I will give some extra credit problems on Tests and Quizzes; I also scheduled an extra credit Practice Final

Previous TESTS and Quizzes I posted a collection of past Quizzes and Tests on the course Webpage.

They are designed to help you to learn what you have learned and what you still don’t understand from the material covered by the test. You can take them for your own practice (don’t need to submit it)

Practice tests policy I also published practice quizzes and tests which designed to help you to learn what and how much you have learned and what you still don’t understand from the material covered by the test.

Final grade computation You can earn up to 200 points + x extra credit points = (200 + x) points during the semester.

Extra points are BENEFICIAL for students as they add to the TOTAL number of points!!

None of the grades will be curved The grade will be determined in the following way:

of earned points divided by 2 = % grade.

The % grade is translated into a letter grade in a standard way i.e.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 – 95%</td>
<td>A</td>
</tr>
<tr>
<td>94 – 90%</td>
<td>A−</td>
</tr>
<tr>
<td>89 – 86%</td>
<td>B+</td>
</tr>
<tr>
<td>85 – 83%</td>
<td>B</td>
</tr>
<tr>
<td>82 – 80%</td>
<td>B−</td>
</tr>
<tr>
<td>79 – 76%</td>
<td>C+</td>
</tr>
<tr>
<td>75 – 73%</td>
<td>C</td>
</tr>
<tr>
<td>72 – 70%</td>
<td>C−</td>
</tr>
<tr>
<td>69 – 60%</td>
<td>D range</td>
</tr>
<tr>
<td>< 60%</td>
<td>F</td>
</tr>
</tbody>
</table>
Tentative Quizzes and Tests schedule
Changes (if any) will be advertised on the course webpage

Observe that we have no class on September 4

Q1 Wednesday, October 3

Fall Break October 8 -9

MIDTERM Wednesday, October 31 in class

Thanksgiving Break November 21 - 25

Q2 Wednesday, November 28

Practice Final (extra credit) Wednesday, December 5 in class

Last Class (Review for Final) Monday, December 10

FINAL time and place as scheduled by University

COURSE CONTENT The course will to cover in all or selection of the following subjects.

1. Intuitive Introduction to classical Logic: propositional and predicate languages. AI languages. Basic propositional and predicate tautologies. Equational Laws for quantifiers.

3. Formal deductive systems, called also proof systems. General definition and examples. Definition of a formal proof. Relationship between proof systems and their semantics, i.e general definition of notions of soundness and completeness of a given proof systems relatively to given semantics. Definition of a logic as a complete proof system.

8. Formal Introduction to Predicate (First Order) Logic. Completeness Theorem. QRS proof system.

ACADEMIC INTEGRITY STATEMENT (Adopted by the Undergraduate Council September 12, 2006)

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person’s work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

Stony Brook University Syllabus Statement If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.sunysb.edu/ehs/fire/disabilities.shtml