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Chapter 6
Automated Proof Systems for Classical Propositional Logic

PART 3: GENTZEN SYSTEMS



Gentzen Sequent Calculus GL

The proof system GL for the classical propositional logic
presented now is a version of the original Gentzen (1934)
systems LK.

A constructive proof of the Completeness Theorem for the
system GL is very similar to the proof of the Completeness
Theorem for the system RS

Expressions of the system are like in the original Gentzen
system LK are Gentzen sequents

Hence we use also a name Gentzen sequent calculus for it



Gentzen Sequent Calculus GL

Language of GL
L = L{∪,∩,⇒,¬}

Let F be the set of all formulas of L{∪,∩,⇒,¬}
We denote, as in the RS system, the finite sequences (with
indices if necessary) of formulas by Greek capital letters

Γ,∆,Σ, . . .

We add a new symbol −→ called a Gentzen arrow to the
language L, i.e. we form a language

L1 = L ∪ {−→}.

The Gentzen sequents are built out of finite sequences
(empty included) of formulas, i.e. elements of F ∗, and the
additional symbol −→



Gentzen Sequents

Definition Any expression

Γ −→ ∆

where Γ,∆ ∈ F ∗ is called a sequent

Intuitively, we interpret semantically a sequent

A1, ...,An −→ B1, ...,Bm

where n,m ≥ 1, as a formula

(A1 ∩ ... ∩ An)⇒ (B1 ∪ ... ∪ Bm)

of the language L{∪,∩,⇒,¬}



Gentzen Sequents

The sequent
A1, ...,An −→

(where m ≥ 1) means that A1 ∩ ... ∩ An yields a
contradiction

The sequent
−→ B1, ...,Bm

(where m ≥ 1) means semantically T ⇒ (B1 ∪ ... ∪ Bm)

The empty sequent
−→

means a contradiction



Gentzen Sequents

Given non empty sequences Γ, ∆

We denote by σΓ any conjunction of all formulas of Γ

We denote by δ∆ any disjunction of all formulas of ∆

The intuitive semantics of a non- empty sequent Γ −→ ∆
is

Γ −→ ∆ ≡ (σΓ ⇒ δ∆)



Formal Semantics

Formal semantics for sequents of GL is defined as follows

Let v : VAR −→ {T ,F} be a truth assignment and v∗ its
extension to the set of formulas F of L{∪,∩,⇒,¬}
We extend v∗ to the set

SQ = { Γ −→ ∆ : Γ,∆ ∈ F ∗ }

of all sequents as follows

For any sequent Γ −→ ∆ ∈ SQ

v∗(Γ −→ ∆) = v∗(σΓ)⇒ v∗(δ∆)



Formal Semantics

In the case when Γ = ∅ or ∆ = ∅ we define

v∗( −→ ∆) = (T ⇒ v∗(δ∆))

v∗(Γ −→ ) = (v∗(σΓ)⇒ F)

The sequent Γ −→ ∆ is satisfiable if there is a truth
assignment v : VAR −→ {T ,F} such that

v∗(Γ −→ ∆) = T



Formal Semantics

Model for Γ −→ ∆ is any v such that

v∗(Γ −→ ∆) = T

We write it v |= Γ −→ ∆

Counter- model is any v such that

v∗(Γ −→ ∆) = F

We write it v 6|= Γ −→ ∆

Tautology is any sequent Γ −→ ∆ such that

v∗(Γ −→ ∆) = T for all truth assignments v : VAR −→ {T ,F}

We write it
|= Γ −→ ∆



Example

Example

Let Γ −→ ∆ be a sequent

a, (b ∩ a) −→ ¬b , (b ⇒ a)

The truth assignment v for which

v(a) = T and v(b) = T

is a model for Γ −→ ∆ as shows the following computation

v∗(a, (b ∩ a) −→ ¬b , (b ⇒ a)) = v∗(σ{a,(b∩a)})⇒ v∗(δ{¬b ,(b⇒a)})

= v(a) ∩ (v(b) ∩ v(a))⇒ ¬v(b) ∪ (v(b)⇒ v(a))

= T∩T∩T ⇒ ¬T∪(T ⇒ T) = T ⇒ (F∪T) = T ⇒ T = T



Example

Observe that the truth assignment v for which

v(a) = T and v(b) = T

is the only one for which

v∗(Γ) = v∗(a, (b ∩ a) = T

and we proved that it is a model for

a, (b ∩ a) −→ ¬b , (b ⇒ a)

It is hence impossible to find v which would falsify it, what
proves that

|= a, (b ∩ a) −→ ¬b , (b ⇒ a)



Gentzen System GL

Definition of GL

Logical Axioms LA

We adopt as an axiom any sequent of variables (positive
literals) which contains a propositional variable that appears
on both sides of the sequent arrow −→, i.e any sequent of
the form

Γ′1, a, Γ
′
2 −→ ∆′1, a,∆

′
2

for any a ∈ VAR and any sequences Γ′1, Γ
′
2,∆

′
1,∆

′
2 ∈ VAR∗



Gentzen System GL

Inference rules of GL

Let Γ
′

,∆
′

∈ VAR∗ and Γ,∆ ∈ F ∗

Conjunction rules

(∩ →)
Γ
′

, A ,B , Γ −→ ∆
′

Γ′ , (A ∩ B), Γ −→ ∆′

(→ ∩)
Γ −→ ∆, A , ∆

′

; Γ −→ ∆, B , ∆
′

Γ −→ ∆, (A ∩ B) ∆′



Gentzen System GL

Disjunction rules

(→ ∪)
Γ −→ ∆, A ,B , ∆

′

Γ −→ ∆, (A ∪ B), ∆′

(∪ →)
Γ
′

, A , Γ −→ ∆
′

; Γ
′

, B , Γ −→ ∆
′

Γ′ , (A ∪ B), Γ −→ ∆′



Gentzen System GL

Implication rules

(→⇒)
Γ
′

, A , Γ −→ ∆, B , ∆
′

Γ′ , Γ −→ ∆, (A ⇒ B), ∆′

(⇒→)
Γ
′

, Γ −→ ∆, A , ∆
′

; Γ
′

, B , Γ −→ ∆,∆
′

Γ′ , (A ⇒ B), Γ −→ ∆,∆′



Gentzen System GL

Negation rules

(¬ →)
Γ
′

, Γ −→ ∆, A , ∆
′

Γ′ , ¬A , Γ −→ ∆,∆′

(→ ¬)
Γ
′

, A , Γ −→ ∆,∆
′

Γ′ , Γ −→ ∆, ¬A , ∆′



Gentzen System GL

We define the Gentzen System GL

GL = ( L{∪,∩,⇒,¬}, SQ , LA , R )

for

R = {(∩ −→), (−→ ∩), (∪ −→), (−→ ∪), (⇒−→), (−→⇒)}

∪ {(¬ −→), (−→ ¬)}

We write, as usual,
`GL Γ −→ ∆

to denote that Γ −→ ∆ has a formal proof in GL
A formula A ∈ F , has a proof in GL if the sequent −→ A
has a proof in GL, i.e.

`GL A if ad only if −→ A



Gentzen System GL

We consider, as we did with RS the proof trees for GL, i.e. we
define

A proof tree, or GL-proof of Γ −→ ∆ is a tree

TΓ−→∆

of sequents satisfying the following conditions:

1. The topmost sequent, i.e the root of TΓ−→∆ is Γ −→ ∆

2. All leafs are axioms

3. The nodes are sequents such that each sequent on the
tree follows from the ones immediately preceding it by one of
the rules.



Gentzen System GL

Remark

The proof search in GL as defined by the decomposition
tree for a given formula A is not always unique

We show it on an example on the next slide



Example

A tree-proof in GL of the de Morgan Law

−→ (¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (−→⇒)

¬(a ∩ b) −→ (¬a ∪ ¬b)

| (−→ ∪)

¬(a ∩ b) −→ ¬a,¬b

| (−→ ¬)

b ,¬(a ∩ b) −→ ¬a

| (−→ ¬)

b , a,¬(a ∩ b) −→

| (¬ −→)

b , a −→ (a ∩ b)∧
(−→ ∩)

b , a −→ a b , a −→ b



Example

Here is another tree-proof in GL of the de Morgan Law

−→ (¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (−→⇒)

¬(a ∩ b) −→ (¬a ∪ ¬b)

| (−→ ∪)

¬(a ∩ b) −→ ¬a,¬b

| (−→ ¬)

b ,¬(a ∩ b) −→ ¬a

| (¬ −→)

b −→ ¬a, (a ∩ b)∧
(−→ ∩)

b −→ ¬a, a

| (−→ ¬)

b , a −→ a

b −→ ¬a, b

| (−→ ¬)

b , a −→ b



Gentzen System GL

The process of searching for proofs of a formula A in GL
consists, as in the RS type systems, of building certain trees,
called decomposition trees

Their construction is similar to the one for RS type systems

We take a root of a decomposition tree TA of of a formula A
a sequent −→ A

For each node, if there is a rule of GL which conclusion has
the same form as node sequent, then the node has children
that are premises of the rule

If the node consists only of a sequent built only out of
variables then it does not have any children

This is a termination condition for the tree



Gentzen System GL

We prove that each formula A generates a finite set of
decomposition trees, TA , such that the following holds

If there exist a tree TA ∈ TA whose all leaves are axioms,
then tree TA constitutes a proof of A in GL

If all trees in TA have at least one non-axiom leaf, the proof
of A does not exist

The first step in defining a notion of a decomposition tree
consists of transforming the inference rules of GL, as we did
in the case of the RS type systems, into corresponding
decomposition rules



Decomposition Rules of GL

Decomposition rules of GL

Let Γ
′

,∆
′

∈ VAR∗ and Γ,∆ ∈ F ∗

Conjunction rules

(∩ →)
Γ
′

, (A ∩ B), Γ −→ ∆
′

Γ′ , A ,B , Γ −→ ∆′

(→ ∩)
Γ −→ ∆, (A ∩ B) ∆

′

Γ −→ ∆, A , ∆′ ; Γ −→ ∆, B , ∆′



Decomposition Rules of GL

Disjunction rules

(→ ∪)
Γ −→ ∆, (A ∪ B), ∆

′

Γ −→ ∆, A ,B , ∆′

(∪ →)
Γ
′

, (A ∪ B), Γ −→ ∆
′

Γ′ , A , Γ −→ ∆′ ; Γ′ , B , Γ −→ ∆′



Decomposition Rules of GL

Implication rules

(→⇒)
Γ
′

, Γ −→ ∆, (A ⇒ B), ∆
′

Γ′ , A , Γ −→ ∆, B , ∆′

(⇒→)
Γ
′

, (A ⇒ B), Γ −→ ∆,∆
′

Γ′ , Γ −→ ∆, A , ∆′ ; Γ′ , B , Γ −→ ∆,∆′



Decomposition Rules of GL

Negation rules

(¬ →)
Γ
′

, ¬A , Γ −→ ∆,∆
′

Γ′ , Γ −→ ∆, A , ∆′

(→ ¬)
Γ
′

, Γ −→ ∆, ¬A , ∆
′

Γ′ , A , Γ −→ ∆,∆′



Decomposition Tree Definition

For each formula A ∈ F , a decomposition tree TA is a tree
build as follows

Step 1. The sequent −→ A is the root of TA

For any node Γ −→ ∆ of the tree we follow the steps below

Step 2. If Γ −→ ∆ is indecomposable, then Γ −→ ∆
becomes a leaf of the tree

Step 3. If Γ −→ ∆ is decomposable, then we pick a
decomposition rule that matches the sequent of the current
node

To do so we proceed as follows



Decomposition Tree Definition

1. Given a node Γ −→ ∆

We traverse Γ from left to right to find the first
decomposable formula
Its main connective. ◦ identifies a possible decomposition
rule (◦ −→) Then we check if this decomposition rule (◦ −→)
applies. If it does we put its conclusions (conclusion) as
leaves (leaf)
2. We traverse ∆ from right to left to find the first
decomposable formula
Its main connective ◦ identifies a possible decomposition
rule (−→ ◦)

Then we check if this decomposition rule applies. If it does we
put its conclusions (conclusion) as leaves (leaf)
3. If 1 and 2 applies we choose one of the rules
Step 4. We repeat Step 2. and Step 3. until we obtain only
leaves



Decomposition Tree Definition

Observe that a decomposable Γ −→ ∆ is always in the
domain in one of the decomposition rules (◦ −→), (−→ ◦), or
in the domain of both. Hence the tree TA may not be unique
and all possible choices of 3. give all possible decomposition
trees



System GL Exercises

Exercise

Prove, by constructing a proper decomposition tree that

`GL((¬a ⇒ b)⇒ (¬b ⇒ a))

Solution

By definition,we have that

`GL((¬a ⇒ b)⇒ (¬b ⇒ a)) if and only if

`GL −→ ((¬a ⇒ b)⇒ (¬b ⇒ a))

We construct a decomposition tree T→A as follows



System GL Exercises

T→A

−→ ((¬a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

¬b , (¬a ⇒ b) −→ a

| (→ ¬)

(¬a ⇒ b) −→ b , a∧
(⇒−→)

−→ ¬a, b , a

| (→ ¬)

a −→ b , a

axiom

b −→ b , a

axiom

All leaves of the tree are axioms, hence we have found the
proof of A in GL



System GL Exercises

Exercise

Prove, by constructing proper decomposition trees that

0GL ((a ⇒ b)⇒ (¬b ⇒ a))

Solution

Observe that for some formulas A , their decomposition tree
T→A in GL may not be unique

Hence we have to construct all possible decomposition trees
to see that none of them is a proof, i.e. to see that each of
them has a non axiom leaf.

We construct the decomposition trees for −→ A as follows



System GL Exercises

T1→A

−→ ((a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒) (one choice)

(a ⇒ b) −→ (¬b ⇒ a)

| (→⇒) (first of two choices)

¬b , (a ⇒ b) −→ a

| (¬ →) (one choice)

(a ⇒ b) −→ b , a∧
(⇒−→) (one choice)

−→ a, b , a

non − axiom

b −→ b , a

axiom

The tree contains a non- axiom leaf, hence it is not a proof

We have one more tree to construct



System GL Exercises

T2→A

−→ ((a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒) (one choice)

(a ⇒ b) −→ (¬b ⇒ a)∧
(⇒−→) (second choice)

−→ (¬b ⇒ a), a

| (−→⇒) (one choice)

¬b −→ a, a

| (¬ →) (one choice)

−→ a, a, b

non − axiom

b −→ (¬b ⇒ a)

| (→⇒) (one choice)

b ,¬b −→ a

| (¬ →) (one choice)

b −→ a, b

axiom

All possible trees end with a non-axiom leaf. It proves that

0GL ((a ⇒ b)⇒ (¬b ⇒ a))



System GL Exercises

Does the tree below constitute a proof in GL ? Justify your answer

T→A

−→ ¬¬((¬a ⇒ b)⇒ (¬b ⇒ a))

| (→ ¬)

¬((¬a ⇒ b)⇒ (¬b ⇒ a)) −→

| (¬ →)

−→ ((¬a ⇒ b)⇒ (¬b ⇒ a))

| (→⇒)

(¬a ⇒ b) −→ (¬b ⇒ a)

| (→⇒)

(¬a ⇒ b),¬b −→ a

| (¬ →)

(¬a ⇒ b) −→ b , a∧
(⇒−→)

−→ ¬a, b , a

| (→ ¬)

a −→ b , a

axiom

b −→ b , a

axiom



System GL Exercises

Solution
The tree T→A is not a proof in GL because a rule
corresponding to the decomposition step below does not
exists in GL

(¬a ⇒ b),¬b −→ a

| (¬ →)

(¬a ⇒ b) −→ b , a

It is a proof is some system GL1 that has all the rules of GL
except its rule (¬ →)

(¬ →)
Γ
′

, Γ −→ ∆, A , ∆
′

Γ′ , ¬A , Γ −→ ∆,∆′

This rule has to be replaced in by the rule:

(¬ →)1
Γ, Γ

′

−→ ∆,A ,∆
′

Γ,¬A , Γ′ −→ ∆,∆′



Exercises

Exercise 1

Write all proofs in GL of

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

Exercise 2

Find a formula which has a unique decomposition tree

Exercise 3

Describe for which kind of formulas the decomposition tree is
unique



System GL Exercises

Exercise

We know that the system GL is strongly sound

Prove, by constructing a counter-model determined by a
proper decomposition tree that

6|= ((b ⇒ a)⇒ (¬b ⇒ a))

We construct the decomposition tree for the formula

A : ((b ⇒ a)⇒ (¬b ⇒ a)) as follows



System GL Exercises

T→A

−→ ((b ⇒ a)⇒ (¬b ⇒ a))

| (→⇒)

(b ⇒ a) −→ (¬b ⇒ a)

| (→⇒)

¬b , (b ⇒ a) −→ a

| (¬ →)

(b ⇒ a) −→ b , a∧
(⇒−→)

−→ b , b , a

non − axiom

a −→ b , a

axiom

The counter model determined by the tree T→A is any truth
assignment v that evaluates the non axiom leaf −→ b , b , a
to F



System GL Exercises

Let v : VAR −→ {T ,F} be a truth assignment

By definition of semantic for sequents we have that

v∗(−→ b , b , a) = (T ⇒ v(b) ∪ v(b) ∪ v(a))

Hence v∗(−→ b , b , a) = F if and only if

(T ⇒ v(b) ∪ v(b) ∪ v(a)) = F if and only if
v(b) = v(a) = F

The counter model determined by the T→A is any
v : VAR −→ {T ,F} such that v(b) = v(a) = F



System GL Exercises

Exercise

Prove the Completeness theorem for GL

Assume that the Strong Soundness has been already proved
and the Decompositions Trees are already defined

Reminder

Formula Completeness for GL: For any A ∈ F ,

|= A if and only if `GL → A

Soundness for GL: For any A ∈ F ,

If `GL → A , then |= A

Completeness part for GL: For any A ∈ F ,

If |= A , then `GL → A



Proof of Completeness of GL

We prove the logically equivalent form of the Completeness
part: For any A ∈ F ,

If 0GL → A then 6|= A

Proof

Assume 0GL → A , i.e. → A does not have a proof in GL

Let TA be a set of all decomposition trees of→ A

As 0GL → A , each T ∈ TA has a non-axiom leaf

We choose an arbitraryTA ∈ TA



Proof of Completeness of GL

Let Γ′ → ∆′, Γ′,∆′ ∈ VAR∗ be the non-axiom leaf of the
tree TA

The non-axiom leaf Γ′ → ∆′ determines a truth assignment
v : VAR → {T ,F} which is defined as follows:

v(a) =


T if a appears in Γ′

F if a appears in ∆′

any value if a does not appear in Γ′ → ∆′

By the strong soundness of the rules of inference of GL it
proves that v∗(A) = F , i.e. that 6|= A



Original Gentzen systems
LK for Classical Propositional Logic and LI for Intuitionistic Logic



Gentzen Systems LK, LI for Classical and Intuitionistic
Propositional Logics

The proof systems LK for Classical Propositional Logic and
LI for Intuitionistic Propositional Logic as presented here are
CUT- Free versions of original systems published by G.
Gentzen in 1935.

The proof system LI for Intuitionistic Logic was presented
as a particular case of his proof system LK for the classical
logic

Both original Gentzen systems LK, LI were created for
Predicate Logics. We present here only their Propositional
version. The Predicate version to follow



Classical Gentzen System LK

Language of LK

L = L{¬,∩,∪,⇒} and E = SQ

for
SQ = {Γ −→ ∆ : Γ,∆ ∈ F ∗}

Axioms of LK any sequent of the form

Γ1, A , Γ2 −→ Γ3, A , Γ4



Classical Gentzen System LK

Rules of inference of LK are as follows

Structural Rules

Weakening

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→ ∆

Γ −→ ∆, A

Contraction

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆,A



Classical Gentzen System LK

Structural Rules

Exchange

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2



Classical Gentzen System LK

Logical Rules

Conjunction rules

(∩ →)
A ,B , Γ −→ ∆

(A ∩ B), Γ −→ ∆

(→ ∩)
Γ −→ ∆, A ; Γ −→ ∆, B , ∆

Γ −→ ∆, (A ∩ B)

Disjunction rules

(→ ∪)
Γ −→ ∆, A ,B

Γ −→ ∆, (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆



Classical Gentzen System LK

Implication rules

(−→⇒)
A , Γ −→ ∆, B

Γ −→ ∆, (A ⇒ B)

(⇒−→)
Γ −→ ∆, A ; B , Γ −→ ∆

(A ⇒ B), Γ −→ ∆



Classical Gentzen System LK

Negation rules

(¬ −→)
Γ −→ ∆, A
¬A , Γ −→ ∆

(−→ ¬)
A , Γ −→ ∆

Γ −→ ∆, ¬A

We define formally

LK = (L,SQ , AX , Structural rules, Logical rules)



Intuitionistic l Gentzen System LI

Language of LI

Any expression
Γ −→ ∆

where Γ,∆ ∈ F ∗ and

∆ consists of at most one formula

is called a LI sequent

We denote the set of all LI sequents by ISQ , i.e.

ISQ = {Γ −→ ∆ : ∆ consists of at most one formula}



Axioms of LI

Axioms of LI consist of any sequent from the set ISQ
which contains a formula that appears on both sides of the
sequent arrow −→ , i.e any sequent of the form

Γ, A , ∆ −→ A

for Γ,∆ ∈ F ∗



Rules of Inference of LI

The set inference rules of LI is divided into two groups : the
structural rules and the logical rules

There are three Structural Rules of LI: Weakening,
Contraction and Exchange

Weakening structural rule

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→

Γ −→ A

A is called the weakening formula

Remember that ∆ contains at most one formula



Rules of Inference of LI

Contraction structural rule

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

The case below is not VALID for LI; we list it as it will be used
in the classical case

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆, A

A is called the contraction formula

Remember that ∆ contains at most one formula



Rules of Inference of LI

Exchange structural rule

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

The case below is not VALID for LI; we list it as it will be used
in the classical case

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2
.

Remember that ∆ contains at most one formula



Rules of Inference of LI

Logical Rules

Conjunction rules

(∩ →)
A ,B , Γ −→ ∆

(A ∩ B), Γ −→ ∆
,

(→ ∩)
Γ −→ A ; Γ −→ B

Γ −→ (A ∩ B)

Remember that ∆ contains at most one formula



Rules of Inference of LI

Disjunction rules

(→ ∪)1
Γ −→ A

Γ −→ (A ∪ B)

(→ ∪)2
Γ −→ B

Γ −→ (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆

Remember that ∆ contains at most one formula


