cse371/mat371
LOGIC

Professor Anita Wasilewska
LECTURE 3d
Chapter 3 REVIEW (1)
Some Definitions and Problems
DEFINITIONS: Part One

There are some basic DEFINITIONS from Chapter 3

You have to prepare them for Quiz

I will ask you to WRITE down a full, correct text of 1-3 of them - in EXACTLY the same form as they are presented here

Knowing all basic Definitions is the first step to understanding the material
DEFINITIONS: Propositional Extensional Semantics

Definition 1
Given a propositional language \(L_{\text{CON}} \) for the set \(\text{CON} = C_1 \cup C_2 \), where \(C_1, C_2 \) are respectively the sets of unary and binary connectives
Let \(V \) be a non-empty set of logical values
Connectives \(\triangledown \in C_1 \), \(\circ \in C_2 \) are called extensional iff their semantics is defined by respective functions

\[\triangledown : V \rightarrow V \quad \text{and} \quad \circ : V \times V \rightarrow V \]
DEFINITIONS: Propositional Extensional Semantics

Definition 2
Formal definition of a **propositional extensional semantics** for a given language \mathcal{L}_{CON} consists of providing **definitions** of the following four main components:

1. Logical Connectives
2. Truth Assignment
3. Satisfaction, Model, Counter-Model
4. Tautology
CLASSICAL PROPOSITIONAL SEMANTICS
DEFINITIONS: Truth Assignment Extension v^*

Definition 3

The Language: $L = L_{\neg,\Rightarrow,\cup,\cap}$

Given the truth assignment $v : VAR \rightarrow \{ T, F \}$ in classical semantics for the language $L = L_{\neg,\Rightarrow,\cup,\cap}$, we define its extension v^* to the set F of all formulas of L as $v^* : F \rightarrow \{ T, F \}$ such that

(i) for any $a \in VAR$

$$v^*(a) = v(a)$$

(ii) and for any $A, B \in F$ we put

$$v^*(\neg A) = \neg v^*(A);$$
$$v^*((A \cap B)) = \cap(v^*(A), v^*(B));$$
$$v^*((A \cup B)) = \cup(v^*(A), v^*(B));$$
$$v^*((A \Rightarrow B)) = \Rightarrow(v^*(A), v^*(B));$$
$$v^*((A \Leftrightarrow B)) = \Leftrightarrow(v^*(A), v^*(B)).$$
DEFINITIONS: Truth Assignment Extension v^* Revisited

Notation
For binary connectives (two argument functions) we adopt a convention to write the symbol of the connective (name of the 2 argument function) between its arguments as we do in case arithmetic operations.

The condition (ii) of the definition of the extension v^* can be hence written as follows:

(ii) and for any $A, B \in F$ we put

$$v^*(\neg A) = \neg v^*(A);$$
$$v^*((A \cap B)) = v^*(A) \cap v^*(B);$$
$$v^*((A \cup B)) = v^*(A) \cup v^*(B);$$
$$v^*((A \Rightarrow B)) = v^*(A) \Rightarrow v^*(B);$$
$$v^*((A \Leftrightarrow B)) = v^*(A) \Leftrightarrow v^*(B).$$
DEFINITIONS: Satisfaction Relation

Definition 4 Let \(v : \text{VAR} \rightarrow \{T, F\} \)
We say that \(v \) satisfies a formula \(A \in \mathcal{F} \) iff \(v^*(A) = T \)

Notation: \(v \models A \)
We say that \(v \) does not satisfy a formula \(A \in \mathcal{F} \) iff \(v^*(A) \neq T \)

Notation: \(v \not\models A \)
DEFINITIONS: Model, Counter-Model, Classical Tautology

Definition 5
Given a formula \(A \in \mathcal{F} \) and \(v : \text{VAR} \rightarrow \{T, F\} \)
We say that
\(v \) is a model for \(A \) iff \(v \models A \)
\(v \) is a counter-model for \(A \) iff \(v \not\models A \)

Definition 6
\(A \) is a tautology iff for any \(v : \text{VAR} \rightarrow \{T, F\} \) we have that \(v \models A \)

Notation
We write symbolically \(\models A \) to denote that \(A \) is a classical tautology
DEFINITIONS: Restricted Truth Assignments

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

Definition 7 Given a formula $A \in \mathcal{F}$, any function $v_A : \text{VAR}_A \longrightarrow \{T, F\}$

is called a truth assignment restricted to A
DEFINITIONS: Restricted Model, Counter Model

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A.

Definition 8: Given a formula $A \in \mathcal{F}$.
Any function

$$w : \ \VAR_A \longrightarrow \{T, F\} \ \text{such that} \ w^*(A) = T$$

is called a **restricted MODEL** for A.

Any function

$$w : \ \VAR_A \longrightarrow \{T, F\} \ \text{such that} \ w^*(A) \neq T$$

is called a **restricted Counter- MODEL** for A.
Consider \(\mathcal{L} = \mathcal{L}\{\neg, \cup, \cap, \Rightarrow\} \) and let \(S \neq \emptyset \) be any non empty set of formulas of \(\mathcal{L} \), i.e.

\[
S \subseteq F
\]

Definition 9

A truth assignment \(\nu : \text{VAR} \rightarrow \{T, F\} \) is a **model for the set** \(S \) of formulas if and only if

\[
\nu \models A \quad \text{for all formulas} \quad A \in S
\]

We write

\[
\nu \models S
\]

to denote that \(\nu \) is a **model for the set** \(S \) of formulas.
DEFINITIONS: Consistent Sets of Formulas

Definition 10
A non-empty set \(G \subseteq F \) of formulas is called consistent if and only if \(G \) has a model, i.e. we have that

\[
G \subseteq F \quad \text{is consistent} \quad \text{if and only if}
\]

there is \(v \) such that \(v \models G \)

Otherwise \(G \) is called inconsistent.
DEFINITIONS: Independent Statements

Definition 11
A formula A is called independent from a non-empty set $G \subseteq \mathcal{F}$ if and only if there are truth assignments v_1, v_2 such that

$$v_1 \models G \cup \{A\} \quad \text{and} \quad v_2 \models G \cup \{\neg A\}$$

i.e. we say that a formula A is independent if and only if

$$G \cup \{A\} \quad \text{and} \quad G \cup \{\neg A\} \quad \text{are consistent}$$
Many Valued Extensional Semantics
Definition 11
The extensional semantics M is defined for a non-empty set of V of logical values of any cardinality.

We only assume that the set V of logical values of M always has a special, distinguished logical value which serves to define a notion of tautology.

We denote this distinguished value as T.

Formal definition of many valued extensional semantics M for the language L_{CON} consists of giving definitions of the following main components:

1. Logical Connectives under semantics M
2. Truth Assignment for M
3. Satisfaction Relation, Model, Counter-Model under semantics M
4. Tautology under semantics M
Definition of \mathbf{M} - Extensional Connectives

Given a propositional language \mathcal{L}_{CON} for the set $\text{CON} = C_1 \cup C_2$, where C_1 is the set of all unary connectives, and C_2 is the set of all binary connectives

Let V be a non-empty set of logical values adopted by the semantics \mathbf{M}

Definition 12

Connectives $\bigtriangledown \in C_1$, $\circ \in C_2$ are called \mathbf{M}-extensional iff their semantics \mathbf{M} is defined by respective functions

$$\bigtriangledown : V \rightarrow V \quad \text{and} \quad \circ : V \times V \rightarrow V$$
DEFINITION: Definability of Connectives under a semantics M

Given a propositional language L_{CON} and its extensional semantics M

We adopt the following definition

Definition 13

A connective $\circ \in CON$ is **definable** in terms of some connectives $\circ_1, \circ_2, ... \circ_n \in CON$ for $n \geq 1$ **under the semantics M** if and only if the connective \circ is a certain function composition of functions $\circ_1, \circ_2, ... \circ_n$ as they are defined by the semantics M
DEFINITION: M Truth Assignment Extension v^* to \mathcal{F}

Definition 14
Given the M truth assignment $v : \text{VAR} \rightarrow V$
We define its M extension v^* to the set \mathcal{F} of all formulas of \mathcal{L} as any function $v^* : \mathcal{F} \rightarrow V$, such that the following conditions are satisfied

(i) for any $a \in \text{VAR}$

$$v^*(a) = v(a);$$

(ii) For any connectives $\nabla \in C_1$, $\circ \in C_2$ and for any formulas $A, B \in \mathcal{F}$ we put

$$v^*(\nabla A) = \nabla v^*(A)$$

$$v^*((A \circ B)) = \circ(v^*(A), v^*(B))$$
DEFINITION: M Satisfaction, Model, Counter Model, Tautology

Definition 15 Let \(v : \text{VAR} \rightarrow V \)
Let \(T \in V \) be the distinguished logical value
We say that
\(v \) M satisfies a formula \(A \in F \) (\(v \models_M A \)) iff \(v^*(A) = T \)

Definition 16
Given a formula \(A \in F \) and \(v : \text{VAR} \rightarrow V \)
Any \(v \) such that \(v \models_M A \) is called a M model for \(A \)
Any \(v \) such that \(v \not\models_M A \) is called a M counter model for \(A \)
\(A \) is a M tautology (\(\models_M A \)) iff \(v \models_M A \), for all \(v : \text{VAR} \rightarrow V \)
CHAPTER 3: Some Questions
Chapter 3: Question 1

Question 1

1. Find a restricted model for formula A, where

$$A = (\neg a \implies (\neg b \cup (b \implies \neg c)))$$

You can’t use short-hand notation
Show each step of solution

Solution

For any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A : VAR_A \rightarrow \{T, F\}$ is called a truth assignment restricted to A
Chapter 3: Question 1

Let $v : VAR \rightarrow \{T, F\}$ be any truth assignment such that

$$v(a) = v_A(a) = T, \ v(b) = v_A(b) = T, \ v(c) = v_A(c) = F$$

We evaluate the value of the extension v^* of v on the formula A as follows

$$v^*(A) = v^*((\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))))$$
$$= v^*(\neg a) \Rightarrow v^*((\neg b \cup (b \Rightarrow \neg c)))$$
$$= \neg v^*(a) \Rightarrow (v^*(\neg b) \cup v^*((b \Rightarrow \neg c)))$$
$$= \neg v(a) \Rightarrow (\neg v(b) \cup (v(b) \Rightarrow \neg v(c)))$$
$$= \neg v_A(a) \Rightarrow (\neg v_A(b) \cup (v_A(b) \Rightarrow \neg v_A(c)))$$

$(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T$, i.e.

$$v_A \models A \quad \text{and} \quad v \models A$$
Chapter 3: Question 2

Question 2
1. Find a restricted model and a restricted counter-model for A, where

$$A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$$

You can use short-hand notation. Show work

Solution

Notation: for any formula A, we denote by VAR_A a set of all variables that appear in A

In our case we have $VAR_A = \{a, b, c\}$

Any function $v_A : VAR_A \longrightarrow \{T, F\}$ is called a truth assignment restricted to A

We define now $v_A(a) = T$, $v_A(b) = T$, $v_A(c) = F$, in shorthand: $a = T$, $b = T$, $c = F$ and evaluate

$$(\neg T \Rightarrow (\neg T \cup (T \Rightarrow \neg F))) = F \Rightarrow (F \cup T) = F \Rightarrow T = T$$

i.e.

$$v_A \models A$$
Observe that
\[(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) = T \quad \text{when } a = T \quad \text{and } b, c \text{ any truth values as by definition of implication we have that } F \Rightarrow \text{anything} = T\]
Hence \(a = T\) gives us 4 models as we have \(2^2\) possible values on \(b\) and \(c\).
Chapter 3: Question 2

We take as a restricted counter-model: \(a = F\), \(b = T\) and \(c = T\)

Evaluation: observe that

\[\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = F\] if and only if

\[\neg a = T\] and \((\neg b \cup (b \Rightarrow \neg c)) = F\) if and only if

\(a = F\), \(\neg b = F\) and \((b \Rightarrow \neg c) = F\) if and only if

\(a = F\), \(b = T\) and \((T \Rightarrow \neg c) = F\) if and only if

\(a = F\), \(b = T\) and \(\neg c = F\) if and only if

\(a = F\), \(b = T\) and \(c = T\)

The above proves also that \(a = F\), \(b = T\) and \(c = T\) is the only restricted counter-model for \(A\)
Chapter 3: Question 3

Question 3 Justify whether the following statements true or false

S1 There are more then 3 possible restricted counter-models for A

S2 There are more then 2 possible restricted models of A

Solution

Statement: There are more then 3 possible restricted counter-models for A is false

We have just proved that there is only one possible restricted counter-model for A

Statement: There are more then 2 possible restricted models of A is true

There are 7 possible restricted models for A

Justification: $2^3 - 1 = 7$
Chapter 3: Question 4

Question 4
1. List 3 models and 2 counter-models for A from Question 2, i.e. for formula

\[A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c))) \]

that are extensions to the set VAR of all variables of one the restricted models and of one of the restricted counter-models that you have found in Questions 1,2
Chapter 3: Question 4

Solution
One of the restricted models is, for example a function
\[v_A : \{a, b, c\} \rightarrow \{T, F\} \] such that
\[v_A(a) = T, \ v_A(b) = T, \ v_A(c) = F \]

We extend \(v_A \) to the set of all propositional variables \(VAR \) to obtain a (non restricted) models as follows
Chapter 3: Question 4

Model w_1 is a function

$$w_1 : VAR \rightarrow \{T, F\}$$ such that

- $w_1(a) = v_A(a) = T$, $w_1(b) = v_A(b) = T$,
- $w_1(c) = v_A(c) = F$, and $w_1(x) = T$, for all $x \in VAR - \{a, b, c\}$

Model w_2 is defined by a formula

- $w_2(a) = v_A(a) = T$, $w_2(b) = v_A(b) = T$,
- $w_2(c) = v_A(c) = F$, and $w_2(x) = F$, for all $x \in VAR - \{a, b, c\}$
Chapter 3: Question 4

Model \(w_3 \) is defined by a formula
\[w_3(a) = v_A(a) = T, \quad w_3(b) = v_A(b) = T, \quad w_3(c) = v(c) = F, \]
\[w_3(d) = F \quad \text{and} \quad w_3(x) = T \quad \text{for all} \quad x \in VAR - \{a, b, c, d\} \]

There is as many of such models, as extensions of \(v_A \) to the set \(VAR \), i.e. as many as real numbers
Chapter 3: Question 4

A counter-model for a formula A, by definition, is any function

$$v : \text{VAR} \rightarrow \{T, F\}$$

such that $v^*(A) = F$

A restricted counter-model for A (only one as proved in question 5) is a function

$$v_A : \{a, b\} \rightarrow \{T, F\}$$

such that

$$v_A(a) = F, \quad v_A(b) = T, \quad v_A(c) = T$$
Chapter 3: Question 4

We extend v_A to the set of all propositional variables VAR to obtain (non restricted) some counter-models.

Here are two of such extensions

Counter-model w_1:

$w_1(a) = v_A(a) = F$, $w_1(b) = v_A(b) = T$,
$w_1(c) = v(c) = T$, and $w_1(x) = F$, for all $x \in VAR \setminus \{a, b, c\}$

Counter-model w_2:

$w_2(a) = v_A(a) = T$, $w_2(b) = v_A(b) = T$,
$w_2(c) = v(c) = T$, and $w_2(x) = T$ for all $x \in VAR \setminus \{a, b, c\}$

There is as many of such counter-models, as extensions of v_A to the set VAR, i.e. as many as real numbers
Definition

A truth assignment \(v \) is a **model for a set** \(G \subseteq F \) of **formulas** of a given language \(L = L\{\neg, \Rightarrow, \cup, \cap\} \) if and only if

\[v \models B \quad \text{for all} \quad B \in G \]

We denote it by \(v \models G \)

Observe that the set \(G \subseteq F \) can be **finite** or **infinite**
Chapter 3: Consistent Sets of Formulas

Definition
A set $G \subseteq \mathcal{F}$ of formulas is called consistent if and only if G has a model, i.e. we have that $G \subseteq \mathcal{F}$ is consistent if and only if there is v such that $v \models G$

Otherwise G is called inconsistent
Chapter 3: Independent Statements

Definition
A formula A is called independent from a set $G \subseteq \mathcal{F}$ if and only if there are truth assignments v_1, v_2 such that

$v_1 \models G \cup \{A\}$ and $v_2 \models G \cup \{\neg A\}$

i.e. we say that a formula A is independent if and only if

$G \cup \{A\}$ and $G \cup \{\neg A\}$ are consistent
Question 5

Given a set

\[G = \{ ((a \cap b) \Rightarrow b), (a \cup b), \neg a \} \]

Show that \(G \) is consistent

Solution

We have to find \(v : \text{VAR} \rightarrow \{T, F\} \) such that

\[v \models G \]

It means that we need to find \(v \) such that

\[v^*((a \cap b) \Rightarrow b) = T, \quad v^*(a \cup b) = T, \quad v^*(\neg a) = T \]
Chapter 3: Question 5

Observe that $\models ((a \cap b) \Rightarrow b)$, hence we have that

1. $v^*((a \cap b) \Rightarrow b) = T$ for any v

 $v^*(\neg a) = \neg v^*(a) = \neg v(a) = T$ only when $v(a) = F$ hence

2. $v(a) = F$

 $v^*(a \cup b) = v^*(a) \cup v^*(b) = v(a) \cup v(b) = F \cup v(b) = T$

 only when $v(b) = T$ so we get

3. $v(b) = T$

 This means that for any $v : VAR \rightarrow \{ T, F \}$ such that $v(a) = F, \ v(b) = T$

 $v \models G$

 and we proved that G is consistent
Chapter 3: Question 6

Question 6
Show that a formula \(A = (\neg a \cap b) \) is not independent of \(G = \{((a \cap b) \Rightarrow b), (a \cup b), \neg a\} \)

Solution
We have to show that it is impossible to construct \(v_1, v_2 \) such that

\[
v_1 \models G \cup \{A\} \quad \text{and} \quad v_2 \models G \cup \{\neg A\}
\]

Observe that we have just proved that any \(v \) such that \(v(a) = F, \) and \(v(b) = T \) is the only model restricted to the set of variables \(\{a, b\} \) for \(G \) so we have to check now if it is possible that \(v \models A \) and \(v \models \neg A \)
We have to evaluate $v^*(A)$ and $v^*(\neg A)$ for $v(a) = F$, and $v(b) = T$

$v^*(A) = v^*((\neg a \land b)) = \neg v(a) \land v(b) = \neg F \land T = T \land T = T$

and so $v \models A$

$v^*(\neg A) = \neg v^*(A) = \neg T = F$

and so $v \not\models \neg A$

This ends the proof that A is not independent of G
Chapter 3: Question 7

Question 7

2. Find an infinite number of formulas that are independent of \(G = \{((a \land b) \Rightarrow b), (a \lor b), \neg a\} \)

This my solution - there are many others- this one seemed to me the most simple

Solution

We just proved that any \(v \) such that \(v(a) = F, v(b) = T \) is the only model restricted to the set of variables \{a, b\} and so all other possible models for \(G \) must be extensions of \(v \)
Chapter 3: Question 7

We define a countably infinite set of formulas (and their negations) and corresponding extensions of v (restricted to to the set of variables $\{a, b\}$) such that $v \models G$ as follows.

Observe that all extensions of v restricted to to the set of variables $\{a, b\}$ have as domain the infinitely countable set

$$\text{VAR} - \{a, b\} = \{a_1, a_2, \ldots, a_n, \ldots\}$$

We take as a set of formulas (to be proved to be independent) the set of atomic formulas

$$\mathcal{F}_0 = \text{VAR} - \{a, b\} = \{a_1, a_2, \ldots, a_n, \ldots\}$$
Let $c \in \mathcal{F}_0$
We define truth assignments $\nu_1, \nu_2 : \text{VAR} \rightarrow \{T, F\}$ such that

\[\nu_1 \models G \cup \{c\} \quad \text{and} \quad \nu_2 \models G \cup \{\neg c\}\]

as follows

\[\nu_1(a) = \nu(a) = F, \quad \nu_1(b) = \nu(b) = T \quad \text{and} \quad \nu_1(c) = T\]
for all $c \in \mathcal{F}_0$

\[\nu_2(a) = \nu(a) = F, \quad \nu_2(b) = \nu(b) = T \quad \text{and} \quad \nu_2(c) = F\]
for all $c \in \mathcal{F}_0$
CHAPTER 3
Some Extensional Many Valued Semantics
Chapter 3: Question 8

Question 8
We define a 4 valued H_4 logic semantics as follows.

The language is $L = \mathcal{L}\{\neg, \Rightarrow, \cup, \cap\}$

The logical connectives \neg, \Rightarrow, \cup, \cap of H_4 are operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$ and are defined as follows.

Conjunction \cap is a function

$\cap : \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$

$$a \cap b = \min\{a, b\}$$
Chapter 3: Many Valued Semantics

Disjunction \cup is a function

$\cup : \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$

$$a \cup b = \max\{a, b\}$$

Implication \Rightarrow is a function

$\Rightarrow : \{F, \bot_1, \bot_2, T\} \times \{F, \bot_1, \bot_2, T\} \rightarrow \{F, \bot_1, \bot_2, T\}$, such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$,

$$a \Rightarrow b = \begin{cases} T & \text{if } a \leq b \\ b & \text{otherwise} \end{cases}$$

Negation:

$$\neg a = a \Rightarrow F$$
Chapter 3: Question 10

Part 1 Write Truth Tables for IMPLICATION and NEGATION in H_4

Solution

H_4 Implication

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>F</th>
<th>\bot_1</th>
<th>\bot_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\bot_1</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\bot_2</td>
<td>F</td>
<td>\bot_1</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\bot_1</td>
<td>\bot_2</td>
<td>T</td>
</tr>
</tbody>
</table>

H_4 Negation

<table>
<thead>
<tr>
<th>\neg</th>
<th>F</th>
<th>\bot_1</th>
<th>\bot_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Chapter 3: Question 10

Part 2 Verify whether

\[\models_{H_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) \]

Solution

Take any \(v \) such that

\(v(a) = \bot_1 \quad v(b) = \bot_2 \)

Evaluate

\(v \ast ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) = (\bot_1 \Rightarrow \bot_2) \Rightarrow (\neg \bot_1 \cup \bot_2) = T \Rightarrow (F \cup \bot_2)) = T \Rightarrow \bot_2 = \bot_2 \)

This proves that our \(v \) is a counter-model and hence

\[\not\models_{H_4} ((a \Rightarrow b) \Rightarrow (\neg a \cup b)) \]
Chapter 3: Classical Propositional Tautologies

Question 11
Show that (can’t use TTables!)

\[\vdash ((\neg a \cup b) \Rightarrow (((c \cap d) \Rightarrow \neg d) \Rightarrow (\neg a \cup b))) \]

Solution
Denote \(A = (\neg a \cup b) \), and \(B = ((c \cap d) \Rightarrow \neg d) \)
Our formula becomes a substitution of a basic tautology

\[(A \Rightarrow (B \Rightarrow A)) \]

and hence is a tautology
Chapter 3: Challenge Exercise

1. Define your own propositional language L_{CON} that contains also different connectives that the standard connectives \neg, \cup, \cap, \Rightarrow

Your language L_{CON} does not need to include all (if any!) of the standard connectives \neg, \cup, \cap, \Rightarrow

2. Describe intuitive meaning of the new connectives of your language

3. Give some motivation for your own semantic

4. Define formally your own extensional semantics M for your language L_{CON} - it means write carefully all Steps 1- 4 of the definition of your M