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Chapter 10
Part 1: Predicate Languages



Predicate Languages

Predicate Languages are also called First Order Languages

The same applies to the use of terms for Propositional and
Predicate Logic

Propositional and Predicate Logics called Zero Order and
First Order Logics, respectively and we will use both terms
equally

We usually work with different predicate languages,
depending on what applications we have in mind

All predicate languages have some common features, and
we begin with these



Predicate Languages Components

Propositional Connectives

Predicate Languages extend a notion of the propositional
languages so we define the set CON of their propositional
connectives as follows

The set CON of propositional connectives is a finite and
non-empty and

CON = C1 ∪ C2

where C1,C2 are the sets of one and two arguments
connectives, respectively

Parenthesis

As in the propositional case, we adopt the signs ( and ) for
our parenthesis., i.e. we define a set PAR as

PAR = { (, ) }



Predicate Languages Components

Quantifiers

We adopt two quantifiers; the universal quantifier denoted
by ∀ and the existential quantifier denoted by ∃, i.e. we
have the following set Q of quantifiers

Q = {∀, ∃}

In a case of the classical logic and the logics that extend it, it
is possible to adopt only one quantifier and to define the
other in terms of it and propositional connectives

Such definability is impossible in a case of some non-classical
logics, for example the intuitionistic logic

But even in the case of classical logic the two quantifiers
express better the common intuition, so we adopt the both of
them



Predicate Languages Components

Variables

We assume that we always have a countably infinite set
VAR of variables, i.e. we assume that

cardVAR = ℵ0

We denote variables by x, y, z, ..., with indices, if necessary.

we often express it by writing

VAR = {x1, x2, ....}

Note



Predicate Languages Components

The set CON of propositional connectives defines a
propositional part of the predicate logic language

Observe that what really differ one predicate language from
the other is the choice of additional symbols added to the
symbols just described

These additional symbols are: predicate symbols, function
symbols, and constant symbols

A particular predicate language is determined by specifying
these additional sets of symbols

They are defined as follows



Predicate Languages Components

Predicate symbols
Predicate symbols represent relations
Any predicate language must have at least one predicate
symbol
Hence we assume that any predicate language contains a
non empty, finite or countably infinite set

P

of predicate symbols, i.e. we assume that

0 < cardP ≤ ℵ0

We denote predicate symbols by P,Q ,R , ... , with indices, if
necessary
Each predicate symbol P ∈ P has a positive integer #P
assigned to it; when #P = n we call P an n-ary (n - place)
predicate (relation) symbol



Predicate Languages Components

Function symbols

We assume that any predicate language contains a finite (may
be empty) or countably infinite set F of function symbols

I.e. we assume that

0 ≤ cardF ≤ ℵ0

When the set F is empty we say that we deal with a
language without functional symbols

We denote functional symbols by f , g, h, ... with indices, if
necessary

Similarly, as in the case of predicate symbols, each function
symbol f ∈ F has a positive integer #f assigned to it; if
#f = n then f is called an n-ary (n - place) function
symbol



Predicate Languages Components

Constant symbols
We also assume that we have a finite (may be empty) or
countably infinite set

C

of constant symbols
I.e. we assume that

0 ≤ cardC ≤ ℵ0

The elements of C are denoted by c, d, e..., with indices, if
necessary
We often express it by putting

C = {c1, c2, ...}

When the set C is empty we say that we deal with a
language without constant symbols



Alphabet of Predicate Languages

Sometimes the constant symbols are defined as 0-ary
function symbols, i.e. we have that

C ⊆ F

We single them out as a separate set for our convenience

We assume that all of the above sets of symbols are disjoint

Alphabet

The union of all of above disjoint sets of symbols is called the
alphabet A of the predicate language, i.e. we define

A = VAR ∪ CON ∪ PAR ∪ Q ∪ P ∪ F ∪ C



Predicate Languages Notation

Observe, that once the set of propositional connectives is
fixed, the predicate language is determined by the sets P, F
and C

We use the notation
L(P,F,C)

for the predicate language L determined by P, F, C

If there is no danger of confusion, we may abbreviate
L(P,F,C) to just L

If the set of propositional connectives involved is not fixed, we
also use the notation

LCON(P,F,C)

to denote the predicate language L determined by P, F, C
and the set of propositional connectives CON



Predicate Languages Notation

We sometimes allow the same symbol to be used as an
n-place relation symbol, and also as an m-place one; no
confusion should arise because the different uses can be told
apart easily

Example

If we write P(x, y) , the symbol P denotes 2-argument
predicate symbol

If we write P(x, y, z), the symbol P denotes 3-argument
predicate symbol

Similarly for function symbols



Two more Predicate Language Components

Having defined the alphabet we now complete the formal
definition of the predicate language by defining two more
components:

the set T of all terms and

the set F of all well formed formulas

of the language L(P,F,C)



Set of Terms

Terms

The set T of terms of the predicate language L(P,F,C)
is the smallest set

T ⊆ A∗

meeting the conditions:
1. any variable is a term, i.e. VAR ⊆ T
2. any constant symbol is a term, i.e. C ⊆ T
3. if f is an n-place function symbol, i.e. f ∈ F and #f = n

and t1, t2, ..., tn ∈ T , then f(t1, t2, ..., tn) ∈ T



Terms Examples

Example 1

Let f ∈ F,#f = 1 , i.e. f is a 1-place function symbol

Let x, y be variables, c, d be constants, i.e.
x, y ∈ VAR , c, d ∈ C

Then the following expressions are terms:

x, y, f(x), f(y), f(c), f(d), f(f((x))), f(f(y)), f(f(c)), f(f(d)), ...

Example 2

Let F = ∅,C = ∅

In this case terms consists of variables only, i.e.

T = VAR = {x1, x2, .... }



Terms Examples

Directly from the Example 2 we get the following

REMARK

For any predicate language L(P,F,C), the set T of its
terms is always non-empty

Example 3

Let f ∈ F,#f = 1, g ∈ F,#g = 2, x, y ∈ VAR , c, d ∈ C

Some of the terms are the following:

f(g(x, y)), f(g(c, x)), g(f(f(c)), g(x, y)),

g(c, g(x, f(c))), g(f(g(x, y)), g(x, f(c))) ....



Terms Notation

From time to time, the logicians are and we may be informal
about how we write terms

Example

If we denote a 2- place function symbol g by +, we may
write x + y instead +(x, y)

Because in this case we can think of x + y as an unofficial
way of designating the ”real” term +(x, y)



Atomic Formulas

Before we define the set of formulas, we need to define one
more set; the set of atomic, or elementary formulas

Atomic formulas are the simplest formulas as the
propositional variables were in the case of propositional
languages



Atomic Formulas

Definition

An atomic formula of a predicate language L(P,F,C) is
any element of A∗ of the form

R(t1, t2, ..., tn)

where R ∈ P,#R = n and t1, t2, ..., tn ∈ T

I.e. R is n-ary relational symbol and t1, t2, ..., tn are any
terms

The set of all atomic formulas is denoted by AF and is
defines as

AF = {R(t1, t2, ..., tn) ∈ A∗ : R ∈ P, t1, t2, ..., tn ∈ T , n ≥ 1}



Atomic Formulas Examples

Example 1

Consider a language L(∅, {P}, ∅), for #P = 1

Our language
L = L(∅, {P}, ∅)

is a language without neither functional, nor constant
symbols, and with one, 1-place predicate symbol P

The set of atomic formulas contains all formulas of the form
P(x), for x any variable, i.e.

AF = {P(x) : x ∈ VAR}



Atomic Formulas Examples

Example 2

Let now consider a predicate language

L = L({f , g}, {R}, {c, d})

for #f = 1,#g = 2,#R = 2

The language L has two functional symbols: 1-place
symbol f and 2-place symbol g, one 1-place predicate
symbol R, and two constants: c,d

Some of the atomic formulas in this case are the following.

R(c, d), R(x, f(c)), R((g(x, y)), f(g(c, x))),

R(y, g(c, g(x, f(d)))) .....



Set of Formulas Definition

Now we are ready to define the set F of all well formed
formulas of any predicate language L(P,F,C)

Definition

The set F of all well formed formulas, called shortly set of
formulas, of the language L(P,F,C) is the smallest set
meeting the following four conditions:

1. Any atomic formula of L(P,F,C) is a formula , i.e.

AF ⊆ F

2. If A is a formula of L(P,F,C), 5 is an one argument
propositional connective, then 5A is a formula of
L(P,F,C), i.e. the following recursive condition holds

if A ∈ F ,5 ∈ C1 then 5A ∈ F



Set of Formulas Definition

3. If A ,B are formulas of L(P,F,C) and ◦ is a two argument
propositional connective, then (A ◦ B) is a formula of
L(P,F,C), i.e. the following recursive condition holds

If A ∈ F ,5 ∈ C2, then (A ◦ B) ∈ F

4. If A is a formula of L(P,F,C) and x is a variable, ∀,∃ ∈ Q ,
then ∀xA , ∃xA are formulas of L(P,F,C), i.e. the following
recursive condition holds

If A ∈ F , x ∈ VAR , ∀,∃ ∈ Q, then ∀xA , ∃xA ∈ F



Scope of the Quantifier

Another important notion of the predicate language is the
notion of scope of a quantifier
It is defined as follows
Definition
Given formulas ∀xA , ∃xA , the formula A is said to be in the
scope of the quantifier ∀, ∃, respectively.
Example 3
Let L be a language of the previous Example 2 with the set
of connectives {∩,∪,⇒,¬} , i.e. let’s consider

L = L{∩,∪,⇒,¬}({f , g}, {R}, {c, d})

for #f = 1, #g = 2 , #R = 2
Some of the formulas of L are the following.

R(c, d), ∃yR(y, f(c)), ¬R(x, y),

(∃xR(x, f(c))⇒ ¬R(x, y))

(R(c, d) ∩ ∀zR(z, f(c))),

∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y)



Scope of Quantifiers

The formula R(x, f(c)) is in scope of the quantifier ∃ in the
formula

∃xR(x, f(c))

The formula (∃xR(x, f(c))⇒ ¬R(x, y)) is not in scope of
any quantifier

The formula (∃xR(x, f(c))⇒ ¬R(x, y)) is in scope of
quantifier ∀ in the formula

∀y(∃xR(x, f(c))⇒ ¬R(x, y))



Predicate Language Definition

Now we are ready to define formally a predicate language

Let A,T ,F be the alphabet , the set of terms and the set of
formulas as already defined

Definition

A predicate language L is a triple

L = (A,T ,F )

As we have said before, the language L is determined by the
choice of the symbols of its alphabet, namely of the choice of
connectives, predicates, functions, and constant symbols

If we want specifically mention these choices, we write

L = LCON(P,F,C) or L = L(P,F,C)



Chapter 10
Part 2: Gentzen Style Proof System for Classical Predicate Logic

The System QRS



The System QRS

Let F be a set of formulas of a predicate language

L(P,F,C) = L{∩,∪,⇒,¬}(P,F,C)

for P, F, C countably infinite sets of predicate, functional, and
constant symbols, respectively

The rules of inference of the system QRS operate, as in the
propositional case, on finite sequences of formulas, i.e. on
elements of F ∗

We will denote, as previously the sequences of formulas by
Γ,∆,Σ, with indices if necessary



Rules of Inference of QRS

The system QRS consists of two axiom schemas and eleven
rules of inference

The rules of inference form two groups

First group is similar to the propositional case and contains
propositional connectives rules:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬)

Second group deals with the quantifiers and consists of four
rules:

(∀), (∃), (¬∀), (¬∃)



Logical Axioms of RS

We adopt as logical axioms of QRS any sequence of
formulas which contains a formula and its negation, i.e any
sequence

Γ1, A , Γ2, ¬A , Γ3

Γ1, ¬A , Γ2, A , Γ3

where A ∈ F is any formula

We denote by LA the set of all logical axioms of QRS



Proof System QRS

Formally we define the system QRS as follows

QRS = (L{∩,∪,⇒,¬}(P,F,C), F ∗, LA , R)

where the set R of inference rules contains the following rule

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬), (∀), (∃), (¬∀), (¬∃)

and LA is the set of all logical axioms defined on previous slide



Literals in QRS

Definition

Any atomic formula , or a negation of atomic formula is
called a literal

We form, as in the propositional case, a special subset

LT ⊆ F

of formulas, called a set of all literals defined now as follows

LT = {A ∈ F : A ∈ AF } ∪ {¬A ∈ F : A ∈ AF }

The elements of the set {A ∈ F : A ∈ AF } are called
positive literals

The elements of the set {¬A ∈ F : A ∈ AF } are called
negative literals



Sequences of Literals

We denote by
Γ
′

, ∆
′

, Σ
′

. . .

finite sequences (empty included) formed out of literals i.e

Γ
′

, ∆
′

, Σ
′

∈ LT∗

We will denote by
Γ, ∆, Σ . . .

the elements of F ∗



Connectives Inference Rules of QRS

Group 1

Disjunction rules

(∪)
Γ
′

, A ,B , ∆
Γ′ , (A ∪ B), ∆

(¬∪)
Γ
′

, ¬A , ∆ ; Γ
′

, ¬B , ∆

Γ′ , ¬(A ∪ B), ∆

Conjunction rules

(∩)
Γ
′

, A , ∆ ; Γ
′

, B , ∆

Γ′ , (A ∩ B), ∆
(¬∩)

Γ
′

, ¬A , ¬B , ∆

Γ′ , ¬(A ∩ B), ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F



Connectives Inference Rules of QRS

Group 1

Implication rules

(⇒)
Γ
′

, ¬A ,B , ∆

Γ′ , (A ⇒ B), ∆
(¬ ⇒)

Γ
′

, A , ∆ : Γ
′

, ¬B , ∆

Γ′ , ¬(A ⇒ B), ∆

Negation rule

(¬¬)
Γ
′

, A , ∆

Γ′ , ¬¬A , ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F



Quantifiers Inference Rules of QRS

Group 2: Universal Quantifier rules

(∀)
Γ
′

, A(y), ∆

Γ′ , ∀xA(x), ∆
(¬∀)

Γ
′

, ¬∀xA(x), ∆

Γ′ , ∃x¬A(x), ∆

where Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

The variable y in rule (∀) is a free individual variable which
does not appear in any formula in the conclusion, i.e. in
any formula in the sequence Γ

′

,∀xA(x),∆,

The variable y in the rule (∀) is called the eigenvariable

The condition: the variable y does not appear in any
formula in the conclusion of (∀) is called the eigenvariable
condition

All occurrences] of y in A(y) of the rule (∀) are fully indicated



Quantifiers Inference Rules of QRS

Group 2: Existential Quantifier rules

(∃)
Γ
′

, A(t), ∆,∃xA(x)

Γ′ , ∃xA(x), ∆
(¬∃)

Γ
′

, ¬∃xA(x), ∆

Γ′ , ∀x¬A(x), ∆

where t ∈ T is an arbitrary term, Γ
′

∈ LT∗, ∆ ∈ F ∗, A ,B ∈ F

Note that A(t),A(y) denotes a formula obtained from A(x)
by writing the term t or y, respectively, in place of all
occurrences of x in A



QRS Decomposition Trees

Given a formula A ∈ F , we define its decomposition tree
TA in a similar way as in the propositional case

Observe that the inference rules of QRS can be divided in
two groups: propositional connectives rules

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒)

and quantifiers rules

(∀), (∃), (¬∀) (¬∃)

We define the decomposition tree in the case of the
propositional rules and the rules (¬∀), (¬∃) in the exactly
the same way as in the propositional case



QRS Decomposition Trees

The case of the rules (∀) and (∃) is more complicated, as
the rules contain the specific conditions under which they
are applicable

To define the way of decomposing the sequences of the form
Γ
′

,∀xA(x),∆ or Γ
′

,∃xA(x),∆, i.e. to deal with the rules (∀)
and (∃)

we assume that all terms form a one-to one sequence

ST t1, t2, ...., tn, ......

Observe, that by the definition, all free variables are terms,
hence all free variables appear in the sequence ST of all
terms



QRS Decomposition Trees

Let Γ be a sequence on the tree in which the first
indecomposable formula has ∀ as its main connective

It means that Γ is of the form

Γ
′

, ∀xA(x), ∆

We write a sequence

Γ
′

, A(y), ∆

below it on the tree, i.e. as its child,

where the variable y fulfills the following condition

C1: y is the first free variable in the sequence ST of terms
such that y does not appear in any formula in Γ

′

,∀xA(x),∆

Observe, that the condition C1 corresponds to the restriction
put on the application of the rule (∀)



QRS Decomposition Trees

Let now first indecomposable formula in Γ has ∃ as its
main connective

It means that Γ is of the form

Γ
′

, ∃xA(x), ∆

We e write a sequence

Γ
′

, A(t), ∆,∃xA(x)

as its child,

where the term t fulfills the following conditions

C2: t is the first term in the sequence ST of all terms
such that the formula A(t) does not appear in any sequence
on the tree which is placed above Γ

′

,A(t),∆,∃xA(x)



QRS Decomposition Trees

Observe that the sequence ST of all terms is one- to - one
and by the conditions C1 and C1 we always chose the first
appropriate term (variable) from the sequence ST

Hence the decomposition tree definition guarantees that the
decomposition process is also unique in the case of the
quantifier rules (∀) and (∃)

From all above, and we conclude the following.

Uniqueness Theorem

For any formula A ∈ F , its decomposition tree TA is unique

Moreover, by definition we have that

If TA is finite and all its leaves are axioms, then TA is a proof
of A in QRS, i.e. ` A

If TA is finite and contains a non-axiom leaf or is infinite,
then 0 A



Examples of Decomposition Trees

In all the examples below, the formulas A(x),B(x) represent
any formulas

But as there is no indication about their particular
components, so they are treated as indecomposable
formulas

The decomposition tree of the formula A representing the de
Morgan Law

(¬∀xA(x)⇒ ∃x¬A(x))

is constructed as follows



Examples of Decomposition Trees

Here is the TA

(¬∀xA(x)⇒ ∃x¬A(x))

| (⇒)

¬¬∀xA(x),∃x¬A(x)

| (¬¬)

∀xA(x),∃x¬A(x)

| (∀)

A(x1),∃x¬A(x)

where x1 is a first free variable in the sequence ST such that x1 does not appear in

∀xA(x),∃x¬A(x)

| (∃)

A(x1),¬A(x1),∃x¬A(x)

where x1 is the first term (variables are terms) in the sequence ST such that ¬A(x1)

does not appear on a tree above A(x1),¬A(x1),∃x¬A(x)

Axiom



Examples of Decomposition Trees

The above tree TA ended with one leaf being axiom, so it
represents a proof in QRS of the de Morgan Law

(¬∀xA(x)⇒ ∃x¬A(x))

i.e. we have proved that

` (¬∀xA(x)⇒ ∃x¬A(x))

The decomposition tree TA for a formula

A = (∀xA(x)⇒ ∃xA(x))

is constructed as follows



Examples of Decomposition Trees

(∀xA(x)⇒ ∃xA(x))

| (⇒)

¬∀xA(x),∃xA(x)

| (¬∀)

¬∀xA(x),∃xA(x)

∃x¬A(x),∃xA(x)

| (∃)

¬A(t1),∃xA(x),∃x¬A(x)

where t1 is the first term in the sequence ST, such that ¬A(t1) does not appear on the tree

above ¬A(t1),∃xA(x),∃x¬A(x)

| (∃)

¬A(t1),A(t1),∃x¬A(x),∃xA(x)

where t1 is the first term in the sequence ST, such that A(t1) does not appear on the tree

above ¬A(t1),A(t1),∃x¬A(x),∃xA(x)

Axiom



Examples of Decomposition Trees

The above tree also ended with the only leaf being the axiom,
hence we have proved that

` (∀xA(x)⇒ ∃xA(x))

We know that the the inverse implication

(∃xA(x)⇒ ∀xA(x))

in not a tautology of predicate language (with formal
semantics yet to come!)

Let’s now look at its decomposition tree TA



Examples of Decomposition Trees

TA

∃xA(x)

| (∃)

A(t1),∃xA(x)

where t1 is the first term in the sequence ST, such that A(t1) does not appear on the tree

above A(t1),∃xA(x)

| (∃)

A(t1),A(t2),∃xA(x)

where t2 is the first term in the sequence ST, such that A(t2) does not appear on the tree

above A(t1),A(t2),∃xA(x), i.e. t2 , t1

| (∃)

A(t1),A(t2),A(t3),∃xA(x)

where t3 is the first term in the sequence ST, such that A(t3) does not appear on the tree

above A(t1),A(t2),A(t3),∃xA(x), i.e. t3 , t2 , t1

| (∃)



Examples of Decomposition Trees

We repeat the procedure

| (∃)

A(t1),A(t2),A(t3),A(t4),∃xA(x)

where t4 is the first term in the sequence ST, such that A(t4) does not appear on the

tree above A(t1),A(t2),A(t3),A(t4),∃xA(x), i.e. t4 , t3 , t2 , t1

| (∃)

.....

| (∃)

.....

Obviously, the above decomposition tree is infinite, what
proves that

0 ∃xA(x)



Examples of Decomposition Trees

We construct now a proof in QRS of the quantifiers
distributivity law

(∃x(A(x) ∩ B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

and show that the proof in QRS of the inverse implication

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

does not exist, i.e. that

0 ((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

The decomposition tree TA of the first formula is the following



Examples of Decomposition Trees

TA

(∃x(A(x) ∩ B(x))⇒ (∃xA(x) ∩ ∃xB(x)))

| (⇒)

¬∃x(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∃)

∀x¬(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (∀)

¬(A(x1) ∩ B(x1)), (∃xA(x) ∩ ∃xB(x))

where x1 is a first free variable in the sequence ST such that x1 does not appear in

∀x¬(A(x) ∩ B(x)), (∃xA(x) ∩ ∃xB(x))

| (¬∩)

¬A(x1),¬B(x1), (∃xA(x) ∩ ∃xB(x))∧
(∩)



Examples of Decomposition Trees

∧
(∩)

¬A(x1),¬B(x1),∃xA(x)

| (∃)

¬A(x1),¬B(x1),A(t1),∃xA(x)

where t1 is the first term in the sequence

ST, such that A(t1) does not appear on the

tree above ¬A(x1),¬B(x1),A(t1),∃xA(x)

| (∃)

....

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

axiom

¬A(x1),¬B(x1),∃xB(x)

| (∃)

¬A(x1),¬B(x1),B(t1),∃xB(x)

| (∃)

...

| (∃)

¬A(x1),¬B(x1), ...B(x1),∃xB(x)

axiom



Examples of Decomposition Trees

Observe, that it is possible to choose eventually a term
ti = x1, as the formula A(x1) does not appear on the tree
above

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

By the definition of the sequence ST, the variable x1 is placed
somewhere in it, i.e. x1 = ti , for certain i ≥ 1

It means that after i applications of the step (∃) in the
decomposition tree, we will get a leaf

¬A(x1),¬B(x1), ...A(x1),∃xA(x)

which is an axiom



Examples of Decomposition Trees

All leaves of the above tree TA are axioms, what means that
we proved

`QRS (∃x(A(x) ∩ B(x))⇒ (∃xA(x) ∩ ∃xB(x))).

We construct now, as the last example, a decomposition tree
TA of the formula

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x))).
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TA

((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x)))

| (⇒)

¬(∃xA(x) ∩ ∃xB(x))∃x(A(x) ∩ B(x))

| (¬∩)

¬∃xA(x),¬∃xB(x),∃x(A(x) ∩ B(x))

| (¬∃)

∀x¬A(x),¬∃xB(x),∃x(A(x) ∩ B(x))

| (∀)

¬A(x1),¬∃xB(x),∃x(A(x) ∩ B(x))

| (¬∃)

¬A(x1),∀x¬B(x),∃x(A(x) ∩ B(x))

| (∀)
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| (∀)

¬A(x1),¬B(x2),∃x(A(x) ∩ B(x))

By the reasoning similar to the reasonings in the previous examples we get that x1 , x2

| (∃)

¬A(x1),¬B(x2), (A(t1) ∩ B(t1)),∃x(A(x) ∩ B(x))

where t1 is the first term in the sequence ST such that (A(t1) ∩ B(t1)) does not appear on

the tree above ¬A(x1),¬B(x2), (A(t1) ∩ B(t1)),∃x(A(x) ∩ B(x)) Observe, that it is

possible that t1 = x1, as (A(x1) ∩ B(x1)) does not appear on the tree above. By the

definition of the sequence ??, x1 is placed somewhere in it, i.e. x1 = ti , for certain i ≥ 1.

For simplicity, we assume that t1 = x1 and get the sequence:

¬A(x1),¬B(x2), (A(x1) ∩ B(x1)),∃x(A(x) ∩ B(x))∧
(∩)
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∧
(∩)

¬A(x1),¬B(x2),

A(x1),∃x(A(x) ∩ B(x))

Axiom

¬A(x1),¬B(x2),

B(x1),∃x(A(x) ∩ B(x))

| (∃)

¬A(x1),¬B(x2),B(x1),

(A(x2) ∩ B(x2)),∃x(A(x) ∩ B(x))

see COMMENT ∧
(∩)

COMMENT: where x2 = t2 (x1 , x2) is the first term in the sequence ST, such that

(A(x2) ∩ B(x2)) does not appear on the tree above

¬A(x1),¬B(x2), (B(x1), (A(x2)∩B(x2)),∃x(A(x)∩B(x)). We assume that t2 = x2 for the

reason of simplicity.
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∧
(∩)

¬A(x1),

¬B(x2),

B(x1),A(x2),

∃x(A(x) ∩ B(x))

| (∃)

...

| (∃)

infinite branch

¬A(x1),

¬B(x2),

B(x1),B(x2),

∃x(A(x) ∩ B(x))

Axiom
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The above decomposition tree TA contains an infinite branch
what means that

0QRS ((∃xA(x) ∩ ∃xB(x))⇒ ∃x(A(x) ∩ B(x))).


