Lecture MONDAY, WEDNESDAY 5:30pm - 6:50 pm
Location JAVITS 103
Professor Anita Wasilewska, e-mail: anita@cs.stonybrook.edu
Please e-mail the professor with serious concerns only.
Phone number 632 8458
Office Hours Monday, Wednesday 12:30 pm - 2:00 pm and by appointment.
TA TBA
e-mail
TA Office Hours TBA
Important There is no recitations, but I will cover solutions to homework assignments and held ques-
tions/answers sessions each week in class.
BOOKS
Main text: Anita Wasilewska, An Introduction to Classical and Non-Classical Logics ,
Book in Progress, under a contact SPRINGER under the title Logics for Computer Science: Classical
and Non-Classical
All book chapters, and lecture slides on are posted on the course webpage; please print them and bring
to class.
Additional texts:
vanced Books &Software, PACIFIC GROVE, CALIFORNIA
Any Logic Textbook you find in the Library
Course Goal The goal of the course is to make student understand the need of, and to learn the
formality of logic. I will progress relatively slowly, making sure that the pace is appropriate for the
undergraduate class. But it doesn’t mean that you can just come to class and listen without doing
work at home!! You have to go over the text in proper chapters; in fact to go over and over again!
The book is written with students on my mind so that they can read and learn by themselves, even
before coming to class. For sure, it is essential to study after the class.
The book, and the course is developed to teach not only intuitive understanding of different logics,
but (and mainly) to teach formal logic as scientific subject, with its language, definitions and
problems.
Workload There will be 4 quizzes, TWO midterm and no final examination.

The consistency of your efforts and work is the most important for this course.

None of the grades will be curved.

Quizzes: total 100pts There will be 6 quizzes (20 minutes), 20 points each.

NO MAKE-up for quizzes.

I might give some additional quizzes for extra credit

Observe that I am giving you 6 quizzes, and you need only 5 to get the full 100pts.

Quizzes will be given on Wednesdays - at the end of the class. I will answer students questions before distributing the Quiz.

Each quiz will consist of 2 -3 questions only: one will cover theoretical material, mainly definitions from the list of definitions you must know that I publish in Review Lectures on the course webpage, the others will be simple problems.

The problems will MAINLY be taken from Problems Solved or listed in the book and Homework Assignments located at the end of the chapters of the book, or from Lectures, or from previous published quizzes and Tests.

Quizzes and Tests are closed book examinations.

Midterm 1 (100pts) Midterm 1 will cover material from Q1, Q2, and Q3.

Midterm 2 (100pts) Midterm 2 will cover material from Q4, Q5, and Q6.

Previous TESTS and Quizzes I posted a collection of past Quizzes and Tests on the course Webpage.

They are designed to help you to learn what you have learned and what you still don’t understand from the material covered by the test. You can take them for your own practice (don’t need to submit it)

Practice tests policy published Practice quizzes and tests are designed to help you to learn what and how much you have learned and what you still don’t understand from the material covered by the test.

Final grade computation You can earn up to 300 points + x extra credit points = (300 + x) points during the semester.

Extra points are BENEFICIAL for students as they add to the TOTAL number of points!!

None of the grades will be curved The grade will be determined in the following way:

of earned points divided by 3 = % grade.

The % grade is translated into a letter grade in a standard way i.e.

100 – 95 % is A, 94 – 90 is A–,

89 – 86% is B+, 85 – 83 % is B, 82 – 80 % is B–,

79 – 76 % is C+, 75 – 73 % is C, 72 – 70 % is C–,

69 – 60 % is D range and F is below 60%.
Quizzes and Tests schedule (can be changed- changes will be advertised on the course webpage

Observe that we have no class on September 5

Q1 Monday, September 19
Q2 Wednesday, September 28
Q3 Wednesday, October 12

MIDTERM 1 Wednesday, October 19 in class

Q4 Wednesday, November 2
Q5 Wednesday, November 16

Thanksgiving Break November 23 - 27

Q6 Wednesday, November 30

MIDTERM 2 Monday, December 5 in class

Last Class Wednesday, December 7

FINAL - no final

COURSE CONTENT The course will to cover in depth the following subjects.

1. Intuitive Introduction to classical Logic: propositional and predicate languages. AI languages. Basic
 propositional and predicate tautologies. Equational Laws for quantifiers.

2. Classical and non-classical languages. Formal syntax and semantics for classical propositional logic.
 Formal definitions of model, counter model, tautology. Semantics for some three valued logics.

3. Formal deductive systems, called also proof systems. General definition and examples. Definition of
 a formal proof. Relationship between proof systems and their semantics, i.e general definition of
 notions of soundness and completeness of a given proof systems relatively to given semantics.
 Definition of a logic as a complete proof system.

4. Hilbert style proof systems for classical propositional logic. Proofs of the Deduction theorem, and
 two different proofs of the completeness theorem.

5. Automated Gentzen type proof systems: RS proof system for classical propositional logic. Examples
 of the automatic proof-search. Constructive proof of the completeness theorem. Original Gentzen
 proof systems.

 Relationship between Intuitionistic and Classical logics.

8. Formal Introduction to Predicate (First Order) Logic. Completeness Theorem. QRS proof system.

9. Theories based on the classical predicate logic. Properties of First-Order Theories. Consistency, incom-
 sistency, completeness, incompleteness of theories. Formal Number Theory Gödel’s Incompleteness
 and Inconsistency Theorems.
ACADEMIC INTEGRITY STATEMENT (Adopted by the Undergraduate Council September 12, 2006)

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person’s work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

Stony Brook University Syllabus Statement If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.sunysb.edu/ehs/fire/disabilities.shtml