cse371/mat371
LOGIC

Professor Anita Wasilewska

Fall 2016
Short Review for Q4

Q4 Covers Chapter 7

PART 1: DEFINITIONS

PART 2: Problems
PART 1: Definitions from Lecture 7 you have to know for Q4
Definition: Proof System

Definition 1
By a proof system we understand a quadruple

\[S = (\mathcal{L}, \mathcal{E}, \mathcal{LA}, \mathcal{R}) \]

where

\[\mathcal{L} = \{ \mathcal{A}, \mathcal{F} \} \] is a language of S with a set \(\mathcal{F} \) of formulas

\[\mathcal{E} \] is a set of expressions of S

In particular case \(\mathcal{E} = \mathcal{F} \)

\[\mathcal{LA} \subseteq \mathcal{E} \] is a non-empty, finite set of logical axioms of S

\[\mathcal{R} \] is a non-empty, finite set of rules of inference of S
Definition: Sound Rule of Inference

Definition 2
An inference rule

\[(r) \quad \frac{P_1; P_2; \ldots; P_m}{C}\]

is sound under a semantics \(M\) if and only if all \(M\)-models of the set \(\{P_1, P_2, \ldots, P_m\}\) of its **premisses** are also \(M\)-models of its **conclusion** \(C\).

In particular, in case of **extensional propositional semantics** when the condition below holds for any truth assignment \(v : VAR \rightarrow LV\):

If \(v \models_M \{P_1, P_2, \ldots, P_m\}\), then \(v \models_M C\)
Definition: Direct Consequence

Definition 3
For any rule of inference $r \in R$ of the form

$$(r) \quad \frac{P_1 ; P_2 ; \ldots ; P_m}{C}$$

C is called a **direct consequence** of $P_1, \ldots P_m$ by virtue of the rule $r \in R$.
Definition: Formal Proof

Definition 4

A formal proof of an expression $E \in \mathcal{E}$ in a proof system $S = (\mathcal{L}, \mathcal{E}, LA, R)$ is a sequence

$$A_1, A_2, \ldots, A_n \quad \text{for} \quad n \geq 1$$

of expressions from \mathcal{E}, such that

$$A_1 \in LA, \quad A_n = E$$

and for each $1 < i \leq n$, either $A_i \in LA$ or A_i is a direct consequence of some of the preceding expressions by virtue of one of the rules of inference.

$n \geq 1$ is the length of the proof A_1, A_2, \ldots, A_n.
NOTATION: Provable Expressions

Notation

We write \(\vdash_S E \) to denote that \(E \in \mathcal{E} \) has a formal proof in the proof system \(S \).

A set

\[
P_S = \{ E \in \mathcal{E} : \vdash_S E \}
\]

is called the set of all provable expressions in \(S \).
Definition: Sound S

Definition 5
Given a proof system

\[S = (\mathcal{L}, \mathcal{E}, \text{LA}, \mathcal{R}) \]

We say that the system \(S \) is \textbf{sound} under a semantics \(M \) iff the following conditions hold

1. Logical axioms \(\text{LA} \) are \textbf{tautologies} of under the semantics \(M \), i.e.

\[\text{LA} \subseteq T_M \]

2. Each rule of inference \(r \in \mathcal{R} \) is \textbf{sound} under the semantics \(M \)
THEOREMS: Soundness Theorem

Let \(P_S \) be the set of all provable expressions of \(S \) i.e.

\[
P_S = \{ A \in \mathcal{E} : \vdash_S A \}
\]

Let \(T_M \) be a set of all expressions of \(S \) that are tautologies under a semantics \(M \), i.e.

\[
T_M = \{ A \in \mathcal{E} : \models_M A \}
\]

Our GOAL is to prove the following theorems:

Soundness Theorem (for \(S \) and semantics \(M \))

\[
P_S \subseteq T_M
\]

i.e. for any \(A \in \mathcal{E} \), the following implication holds

If \(\vdash_S A \) then \(\models_M A \)
THEOREMS: Completeness Theorem

Completeness Theorem (for S and semantics M)

$$P_S = T_M$$

i.e. for any $A \in \mathcal{E}$, the following holds

$$\vdash_S A \iff \models_M A$$

The Completeness Theorem consists of two parts:
Part 1: Soundness Theorem

$$P_S \subseteq T_M$$

Part 2: Completeness Part of the Completeness Theorem

$$T_M \subseteq P_S$$
PART 2: Simple Problems
Formal Proofs

Problem 1
Given a proof system:

\[S = (\mathcal{L}_{\{\neg, \Rightarrow\}}, \mathcal{F}, \{(A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}, \mathcal{R} = \{(r)\} \]

where
\[
(r) \quad \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))}
\]

Write a formal proof in \(S \) with 2 applications of the rule \((r) \)

Solution: There are many solutions. Here is one of them.

Required formal proof is a sequence \(A_1, A_2, A_3 \), where
\[
A_1 = (A \Rightarrow A) \quad \text{(Axiom)}
\]
\[
A_2 = (A \Rightarrow (A \Rightarrow A))
\]
Rule \((r) \) application 1 for \(A = A, B = A \)
\[
A_3 = ((A \Rightarrow A) \Rightarrow (A \Rightarrow (A \Rightarrow A)))
\]
Rule \((r) \) application 2 for \(A = A, B = (A \Rightarrow A) \)
Soudness

Given a proof system:

\[S = (\mathcal{L}_{\neg, \Rightarrow}, \mathcal{F}, \{(A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}, (r) \ \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))}) \]

Problem 2

Prove that \(S \) is sound under classical semantics.

Solution

1. Both axioms of \(S \) are basic classical tautologies
2. Consider the rule of inference of \(S \)

\[(r) \ \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))} \]

Assume that its premise (the only premise) is true, i.e. let \(v \) be any truth assignment, such that \(v^*(A \Rightarrow B) = T \)

We evaluate logical value of the conclusion under the truth assignment \(v \) as follows

\[v^*(B \Rightarrow (A \Rightarrow B)) = v^*(B) \Rightarrow T = T \]

for any \(B \) and any value of \(v^*(B) \)
Given a proof system:

\[S = (\mathcal{L}_{\neg, \to}, \mathcal{F}, \{(A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}, (r) \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))}) \]

Problem 3.
Write a **formal proof** of your choice in \(S \) with 2 applications of the rule \((r)\)

Solution

There many of such proofs, of different length, with different choice if axioms - here is my choice: \(A_1, A_2, A_3 \), where

\(A_1 = (A \Rightarrow A) \)
(Axiom)

\(A_2 = (A \Rightarrow (A \Rightarrow A)) \)

Rule \((r)\) application 1 for \(A = A, B = A \)

\(A_3 = (((A \Rightarrow A) \Rightarrow (A \Rightarrow (A \Rightarrow A)))) \)

Rule \((r)\) application 2 for \(A = A, B = (A \Rightarrow A) \)
Formal Proof

Given a proof system:

\[S = (\mathcal{L}_{\neg,\Rightarrow}, \mathcal{F}, \{(A \Rightarrow A), (A \Rightarrow (\neg A \Rightarrow B))\}), (r) \frac{(A \Rightarrow B)}{(B \Rightarrow (A \Rightarrow B))} \]

Problem 4

1. Prove, by constructing a formal proof that

\[\vdash_S ((\neg A \Rightarrow B) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B))) \]

Solution Required formal proof is a sequence \(A_1, A_2 \), where

\[A_1 = (A \Rightarrow (\neg A \Rightarrow B)) \]

Axiom

\[A_2 = (((\neg A \Rightarrow B) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B)))) \]

Rule \((r)\) application for \(A = A, B = (\neg A \Rightarrow B) \)
Soundness Theorem

2. Does above point 1. prove that

\[\models ((\neg A \Rightarrow B) \Rightarrow (A \Rightarrow (\neg A \Rightarrow B)))? \]

Solution

Yes, it does because the system \(S \) is sound and we proved by Mathematical Induction over the length of a proof that if \(S \) is sound, then the Soundness Theorem holds for \(S \)
Soundness

Problem 5
Given a proof system:

\[S = (L_{\neg, \rightarrow}, F, \{(A \rightarrow A), (A \rightarrow (\neg A \rightarrow B))\}, (r) \frac{(A \rightarrow B)}{(B \rightarrow (A \rightarrow B))}) \]

Prove that \(S \) is not sound under \(K \) semantics

Solution
Axiom \((A \rightarrow A)\) is not a \(K \) semantics tautology
Any truth assignment \(v \) such that \(v^*(A) = \bot \) is a counter-model for it
This proves that \(S \) is not sound under \(K \) semantics