
cse371/mat371
LOGIC

Professor Anita Wasilewska

Fall 2016



LECTURE 11



Chapter 11
Introduction to Intuitionistic Logic



Short History

Intuitionistic logic has developed as a result of certain
philosophical views on the foundation of mathematics, known
as intuitionism

Intuitionism was originated by L. E. J. Brouwer in 1908

The first Hilbert style formalization of the Intuitionistic logic
formulated as a proof system only, is due to A. Heyting in
1930

We present here a Hilbert style proof system I for
Intuitionistic Propositional Logic

The proof system I is equivalent to the Heyting’s original
formalization

We also discuss a relationship between the Intuitionistic and
Classical logics



Short History

There have been, of course, several successful attempts at
creating semantics for the intuitionistic logic, and hence to
define formally a notion of the intuitionistic tautology

The most known are Kripke models and algebraic models

Kripke models were defined by Kripke in 1964

Algebraic models were initiated by Stone and Tarski in
1937, 1938, respectively

An uniform theory and presentation of topological and
algebraic models was given by Rasiowa and Sikorski in
1964



Hilbert Proof System for Intuitionistic Propositional Logic

Language

We adopt a propositional language

L = L{¬, ∪, ∩, ⇒}

with the set of formulas denoted by F

Logical Axioms

A1 ((A ⇒ B)⇒ ((B ⇒ C)⇒ (A ⇒ C)))

A2 (A ⇒ (A ∪ B))

A3 (B ⇒ (A ∪ B))

A4 ((A ⇒ C)⇒ ((B ⇒ C)⇒ ((A ∪ B)⇒ C)))

A5 ((A ∩ B)⇒ A)



Hilbert Proof System for Intuitionistic Propositional Logic

A6 ((A ∩ B)⇒ B)

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A ∩ B)))

A8 ((A ⇒ (B ⇒ C))⇒ ((A ∩ B)⇒ C))

A9 (((A ∩ B)⇒ C)⇒ (A ⇒ (B ⇒ C))

A10 (A ∩ ¬A)⇒ B)

A11 ((A ⇒ (A ∩ ¬A))⇒ ¬A)

where A ,B ,C are any formulas in L

Rules of inference

We adopt a Modus Ponens rule

(MP)
A ; (A ⇒ B)

B
as the only rule of inference



Proof System I

A proof system

I = ( L{¬, ∪, ∩, ⇒}, F , {A1, ...,A11}, (MP) )

is called a Hilbert Style Formalization for Intuitionistic
Propositional Logic

The set of axioms {A1, ...,A11} is due to Rasiowa (1959)

It differs from Heyting’s original set of axioms but they are
equivalent

We introduce, as usual, the notion of a formal proof in I and
denote by

`I A

the fact that a formula A has a formal proof in I and we say
that the formula A is intuitionistically provable



Completeness Theorem

There are several ways one can define a semantics for the
intuitionistic logic

Define a semantics for the intuitionistic logic means to define
the semantics for the original Heyting proof system and prove
the Completeness Theorem for it under this semantics

The same applies to any other equivalent proof system, in
particular for our proof system I



Completeness Theorem

The notion of intuitionistic semantics and hence the formal
definition of intuitionistic tautology will be defined and
discussed later

For a moment we denote by

|=I A

the fact that A is an intuitionistic tautology under some
intuitionistic semantics

Let’s denote by IS any proof system equivalent to the original
Heyting system for Intuitionistic logic

Completeness Theorem for the proof system IS
For any formula A ∈ F ,

`IS A if and only if |=I A



Examples of Intuitionistic Tautologies

Of course, all of Logical Axioms A1 - A11 of our proof
system I are Intuitionistic tautologies

Here are some other classical tautologies that are also
Intuitionistic tautologies

1. (A ⇒ A)

2. (A ⇒ (B ⇒ A))

3. (A ⇒ (B ⇒ (A ∩ B)))

4. ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

5. (A ⇒ ¬¬A)

6. ¬(A ∩ ¬A)

7. ((¬A ∪ B)⇒ (A ⇒ B))



Examples of Intuitionistic Tautologies

8. (¬(A ∪ B)⇒ (¬A ∩ ¬B))

9. ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

10. ((¬A ∪ ¬B)⇒ ¬(A ∩ B))

11. ((A ⇒ B)⇒ (¬B ⇒ ¬A))

12. ((A ⇒ ¬B)⇒ (B ⇒ ¬A))

13. (¬¬¬A ⇒ ¬A)

14. (¬A ⇒ ¬¬¬A)

15. (¬¬(A ⇒ B)⇒ (A ⇒ ¬¬B))

16. ((C ⇒ A)⇒ ((C ⇒ (A ⇒ B))⇒ (C ⇒ B))



Examples of NOT Intuitionistic Tautologies

The following classical tautologies are not intuitionistic
tautologies

17. (A ∪ ¬A)

18. (¬¬A ⇒ A)

19. ((A ⇒ B)⇒ (¬A ∪ B))

20. (¬(A ∩ B)⇒ (¬A ∪ ¬B))

21. ((¬A ⇒ B)⇒ (¬B ⇒ A))

22. ((¬A ⇒ ¬B)⇒ (B ⇒ A))

23. ((A ⇒ B)⇒ A)⇒ A),



Homework Exercises

The general idea of algebraic models for the intuitionistic
logic is defined in terms of Pseudo-Boolean Algebras in the
following way

A formula A is said to be an intuitionistic tautology if and
only if v |= A , for all v and all Pseudo-Boolean Algebras,
where v maps the propositional variable VAR into the
universe of a Pseudo-Boolean Algebra

Definition

A formula A is an intuitionistic tautology if and only if it is
true in all Pseudo-Boolean Algebras under all possible
variable assignments v



Homework Exercises

The 3 element Heyting algebra H as defined in the section
”Some three valued logics” is an example of a 3 element
Pseudo-Boolean Algebra

Exercise 1

Show that the 3 element Heyting algebra H is a model for all
logical axioms A1- A11 and all of the formulas 1-16, i.e. show
that they are all H- tautologies

Exercise 2

Find for which of the formulas 17 - 23 the 3 element Heyting
algebra acts as a counter-model



Connection Between Classical and Intuitionistic Logics

The first connection is quite obvious.

It was proved by Rasiowa and Sikorski in 1964 that by
adding the axiom

A12 (A ∪ ¬A)
to the set of axioms of our system I we obtain a Hilbert proof
system C that is complete with respect to classical semantics

This proves the following.

Theorem 1
Every formula that is intuitionistically derivable is also
classically derivable, i.e. the implication

If `I A then `C A

holds for any A ∈ F



Connection Between Classical and Intuitionistic Logics

We write
|= A

and
|=I A

to denote that A is a classical and intuitionistic tautology,
respectively.

As both proof systems I and C are complete under respective
semantics, we can re-write Theorem 1 as the following
relationship between classical and intuitionistic tautologies

Theorem 2 For any formula A ∈ F ,

If |=I A , then |= A



Connection Between Classical and Intuitionistic Logics

The next relationship shows how to obtain intuitionistic
tautologies from the classical tautologies and vice versa

The following has been proved by Glivenko in 1929 in terms of
provability as the semantics for Intuitionisctic Logic didn’t yet
exist

Theorem 3 (Glivenko)

For any formula A ∈ F ,

A is classically provable if and only if ¬¬A is an
intuitionistically provable, i.e.

`C A if and only if `I ¬¬A

where we use symbol `C for classical provability in a
complete classical proof system



Connection Between Classical and Intuitionistic Logics

The following has been proved by Tarski in 1938 together with
a definition of algebraic semantics for Intuitionistic Logic

Theorem 4 (Tarski)

For any formula A ∈ F ,

A is a classical tautology if and only if ¬¬A is an
intuitionistic tautology, i.e.

|= A if and only if |=I ¬¬A



Connection Between Classical and Intuitionistic Logics

The following relationships were proved by Gödel in 1331.

Theorem 5 (Gödel)

For any formulas A ,B ∈ F ,

a formula (A ⇒ ¬B) is classically provable if and only if
it is intuitionistically provable, i.e.

`C (A ⇒ ¬B) if and only if `I (A ⇒ ¬B)

Theorem 6 (Gödel)

For any formula A ,B ∈ F ,

If A contains no connectives except ∩ and ¬, then A i is
classically provable if and only if it is intuitionistically
provable



Connection Between Classical and Intuitionistic Logics

By the Completeness Theorems for classical and
intuitionisctic logics we get the following equivalent semantic
form of Gödel’ s Theorems 5, 6

Theorem 6

A formula (A ⇒ ¬B) is a classical tautology if and only if
it is an intuitionistic tautology, i.e.

|= (A ⇒ ¬B) if and only if |=I (A ⇒ ¬B)

Theorem 7

If a formula A contains no connectives except ∩ and ¬, then
A is a classical tautology if and only if it is an intuitionistic
tautology



On intuitionistically derivable disjunction

In a classical logic it is possible for the disjunction (A ∪ B) to
be a tautology when neither A nor B is a tautology

The tautology (A ∪ ¬A) is the simplest example

This does not hold for the intuitionistic logic

This fact was stated without the proof by Gödel in 1931 and
proved by Gentzen in 1935 via his proof system LI which is
presented and discussed in chapter 12 and Lecture 15



On intuitionistically derivable disjunction

Remember that Gödel and Gentzen meant by intuitionistic
logic a Heyting proof system or any other proof system (like
the one defined by Gentzen) equivalent with it
The following theorem was announced without the proof by
Gödel in 1931 and proved by Gentzen in 1934
Theorem 8 ( Gödel, Gentzen )
A disjunction (A ∪ B) is intuitionistically provable if and
only if either A or B is intuitionistically provable i.e.

`I (A ∪ B) if and only if `I A or `I B

We obtain, via the Completeness Theorem the following
equivalent semantic version of the above
Theorem 9
A disjunction (A ∪ B) is intuitionistic tautology if and only
if either A or B is intuitionistic tautology, i.e.

|=I (A ∪ B) if and only if |=I A or |=I B



Chapter 11
Gentzen System LI for Intuitionistic Logic



Gentzen System LI for Intuitionistic Logic

Definition of Gentzen System LI

The proof system LI for Intuitionistic Logic as presented
here was published by G. Gentzen in 1935

It was presented as a particular case of his proof system LK
for the classical logic

We present now the original Gentzen proof system LI and
then we show how it can be extended to the original
Gentzen system LK



Language of LI

Language of LI is

L = L{∪,∩,⇒,¬}

We add a new symbol −→ to the language and call it a
Gentzen arrow

We denote, as before, the finite sequences of formulas by
Greek capital letters

Γ,∆,Σ, . . .

with indices if necessary



Language of LI

Definition Any expression

Γ −→ ∆

where Γ,∆ ∈ F ∗ and

∆ consists of at most one formula

is called a LI sequent

We denote the set of all LI sequents by ISQ , i.e.

ISQ = {Γ −→ ∆ : ∆ consists of at most one formula}



Axioms of LI

Axioms of LI consist of any sequent from the set ISQ
which contains a formula that appears on both sides of the
sequent arrow −→ , i.e any sequent of the form

Γ, A , ∆ −→ A

for Γ,∆ ∈ F ∗



Rules of Inference of LI

The set inference rules of LI is divided into two groups : the
structural rules and the logical rules

There are three Structural Rules of LI: Weakening,
Contraction and Exchange

Weakening structural rule

(weak →)
Γ −→ ∆

A , Γ −→ ∆

(→ weak)
Γ −→

Γ −→ A

A is called the weakening formula

Remember that ∆ contains at most one formula



Rules of Inference of LI

Contraction structural rule

(contr →)
A ,A , Γ −→ ∆

A , Γ −→ ∆

The case below is not VALID for LI; we list it as it will be used
in the classical case

(→ contr)
Γ −→ ∆, A ,A

Γ −→ ∆, A

A is called the contraction formula

Remember that ∆ contains at most one formula



Rules of Inference of LI

Exchange structural rule

(exch →)
Γ1, A ,B , Γ2 −→ ∆

Γ1, B ,A , Γ2 −→ ∆

The case below is not VALID for LI; we list it as it will be used
in the classical case

(→ exch)
∆ −→ Γ1, A ,B , Γ2

∆ −→ Γ1, B ,A , Γ2
.

Remember that ∆ contains at most one formula



Rules of Inference of LI

Logical Rules

Conjunction rules

(∩ →)
A ,B , Γ −→ ∆

(A ∩ B), Γ −→ ∆
,

(→ ∩)
Γ −→ A ; Γ −→ B

Γ −→ (A ∩ B)

Remember that ∆ contains at most one formula



Rules of Inference of LI

Disjunction rules

(→ ∪)1
Γ −→ A

Γ −→ (A ∪ B)

(→ ∪)2
Γ −→ B

Γ −→ (A ∪ B)

(∪ →)
A , Γ −→ ∆ ; B , Γ −→ ∆

(A ∪ B), Γ −→ ∆

Remember that ∆ contains at most one formula



Rules of Inference of LI

Implication rules

(→⇒)
A , Γ −→ B

Γ −→ (A ⇒ B)

(⇒→)
Γ −→ A ; B , Γ −→ ∆

(A ⇒ B), Γ −→ ∆

Remember that ∆ contains at most one formula



Gentzen System LI

Negation rules

(¬ →)
Γ −→ A
¬A , Γ −→

(→ ¬)
A , Γ −→

Γ −→ ¬A

We define the Gentzen System LI as

LI = (L, ISQ , AX , Structural rules, Logical rules )



Gentzen Sequent Calculus LI for Intuitionistic Logic
Part 2



Decomposition Trees in LI

Search for proofs in LI is a much more complicated
process then the one in classical logic systems RS or GL

In all systems the proof search procedure consists of
building the decomposition trees

Remark 1

In RS the decomposition tree TA of any formula A is
always unique

Remark 2

In GL the ”blind search” defines, for any formula A a finite
number of decomposition trees,

Nevertheless, it can be proved that the search can be reduced
to examining only one of them, due to the absence of
structural rules



Decomposition Trees in LI

Remark 3

In LI the structural rules play a vital role in the proof
construction and hence, in the proof search

The fact that a given decomposition tree ends with an non-
axiom leaf does not always imply that does not exist

It might only imply that our search strategy was not good

The problem of deciding whether a given formula A does,
or does not have a proof in LI becomes more complex
then in the case of Gentzen system for classical logic



Examples

Example 1

Determine] whether

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))

Observe that

If we find a decomposition tree of A in LI such that all its
leaves are axiom, we have a proof , i.e

`LI A

If all possible decomposition trees have a non-axiom leaf
then the proof of A i n LI does not exist, i.e.

0LI A



Examples

Consider the following decomposition tree T1A

−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(A ∪ B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A ,¬B , (A ∪ B) −→

| (¬ −→)

¬B , (A ∪ B) −→ A

| (−→ weak)

¬B(A ∪ B) −→

| (¬ −→)

(A ∪ B) −→ B∧
(∪ −→)

A −→ B

non − axiom

B −→ B

axiom



Examples

The tree T1A has a non-axiom leaf, so it does not
constitute a proof in LI

Observe that the decomposition tree in LI is not always
unique

Hence this fact does not yet prove that a proof of A does
not exist

Consider the following decomposition tree T2A



−→ ((¬A ∩ ¬B)⇒ (¬(A ∪ B))

| (−→⇒)

(¬A ∩ ¬B) −→ ¬(A ∪ B)

| (−→ ¬)

(A ∪ B), (¬A ∩ ¬B) −→

| (exch −→)

(¬A ∩ ¬B), (A ∪ B) −→

| (∩ −→)

¬A ,¬B , (A ∪ B) −→

| (exch −→)

¬A , (A ∪ B),¬B −→

| (exch −→)

(A ∪ B),¬A ,¬B −→∧
(∪ −→)

A ,¬A ,¬B −→

| (exch −→)

¬A ,A ,¬B −→

| (¬ −→)

A ,¬B −→ A

axiom

B ,¬A ,¬B −→

| (exch −→)

B ,¬B ,¬A −→

| (exch −→)

¬B ,B ,¬A −→

| (¬ −→)

B ,¬A −→ B ; axiom



Examples

All leaves of T2A are axioms and hence

T2A is a a proof in LI

Hence we proved that

`LI ((¬A ∩ ¬B)⇒ ¬(A ∪ B))



Examples

Example 2: Show that

1. `LI (A ⇒ ¬¬A)

2. 0LI (¬¬A ⇒ A)

Solution of 1.

We construct some, or all decomposition trees of

−→ (A ⇒ ¬¬A)

The tree TA that ends with all axioms leaves is a proof of
A in LI



Examples

We construct TA as follows

−→ (A ⇒ ¬¬A)

| (−→⇒)

A −→ ¬¬A

| (−→ ¬)

¬A ,A −→

| (¬ −→)

A −→ A

axiom

All leaves of TA are axioms what proves that we have found
a proof
We don’t need to construct any other decomposition trees.



Examples

Solution of 2.

In order to prove that

0LI (¬¬A ⇒ A)

we have to construct all decomposition trees of

−→ (¬¬A ⇒ A)

and show that each of them has an non-axiom leaf



Examples

Here is T1A

−→ (¬¬A ⇒ A)

| (−→⇒)

one of 2 choices

¬¬A −→ A

| (−→ weak)

one of 3 choices

¬¬A −→

| (¬ −→)

one of 3 choices

−→ ¬A

| (−→ ¬)

one of 2 choices

A −→

non − axiom



Here is T2A

−→ (¬¬A ⇒ A)

| (−→⇒) one of 2 choices

¬¬A −→ A

| (contr −→) second of 2 choices

¬¬A ,¬¬A −→ A

| (−→ weak) first of 2 choices

¬¬A ,¬¬A −→

| (¬ −→) first of 2 choices

¬¬A −→ ¬A

| (−→ ¬) one of 2 choices

A ,¬¬A −→

| (exch −→) one of 2 choices

¬¬A ,A −→

| (¬ −→)one of 2 choices

A −→ ¬A

| (−→ ¬) first of 2 choices

A ,A −→

non − axiom



Structural Rules

We can see from the above decomposition trees that the
”blind” construction of all possible trees only leads to more
complicated trees

This is due to the presence of structural rules ”blind”
application of the rule (contr →) gives always an infinite
number of decomposition trees

In order to decide that none of them will produce a proof we
need some extra knowledge about patterns of their
construction, or just simply about the number o useful of
application of structural rules within the proofs.



Structural Rules

In this case we can just make an ”external” observation that
the our first tree T1A is in a sense a minimal one

It means that all other trees would only complicate this one
in an inessential way, i.e. the we will never produce a tree
with all axioms leaves

One can formulate a deterministic procedure giving a finite
number of trees, but the proof of its correctness is needed
and that requires some extra knowledge

Within the scope of this book we accept the ”external
explanation as a sufficient solution, provided its correctness
had been proved elsewere



Structural Rules

As we can see from the above examples the structural rules
and especially the (contr −→) rule complicates the proof
searching task.

Both Gentzen type proof systems RS and GL from the
previous chapter don’t contain the structural rules

They also are as we have proved, complete with respect to
classical semantics.

The original Gentzen system LK which does contain the
structural rules is also, as proved by Gentzen, complete



Structural Rules

Hence all three classical proof system RS, GL, LK are
equivalent

This proves that the structural rules can be eliminated
from the system LK

A natural question of elimination of structural rules from the
Intutionistic Gentzen system LI arises

The following example illustrates the negative answer



Connection Between Classical and Intuitionistic Logics

Here is the connection between Intuitionistic logic and the
Classical one

Theorem 1

For any formula A ∈ F ,

|= A if and only if `I ¬¬A

where

|= A means that A is a classical tautology

`IS A means that A is Intutionistically provable in any
Intuitionistically complete proof system IS



Connection Between Classical and Intuitionistic Logics

A Gentzen system LI has been proved to be
Intuitionistically complete so have that the following

Theorem 2

For any formula A ∈ F ,

|= A if and only if `LI ¬¬A



Example

Example 3

Obviously
|= (¬¬A ⇒ A)

so by Theorem 2 we must have that

`LI ¬¬(¬¬A ⇒ A)

We are going to prove now that the structural rule (contr −→)
is essential to the existence of the proof, i.e

We show now that the formula We ¬¬(¬¬A ⇒ A) is not
provable in LI without the rule (contr −→)

The following decomposition tree TA is a proof of
A = ¬¬(¬¬A ⇒ A) in LI with use of the contraction rule
(contr −→)



−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (contr −→)

¬(¬¬A ⇒ A),¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ (¬¬A ⇒ A)

| (−→⇒)

¬(¬¬A ⇒ A),¬¬A −→ A

| (−→ weak)

¬(¬¬A ⇒ A),¬¬A −→

| (exch −→)

¬¬A ,¬(¬¬A ⇒ A) −→

| (¬ −→)

¬(¬¬A ⇒ A) −→ ¬A

| (−→ ¬)

A ,¬(¬¬A ⇒ A) −→

| (exch −→)

¬(¬¬A ⇒ A),A −→

| (¬ −→)

A −→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A ,A −→ A

axiom



Contraction Rule

Assume now that the Contraction rule (contr −→) is not
available
All possible decomposition trees are as follows
Tree T1A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ ¬)

A −→

non − axiom



Contraction Rule

The next is T2A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom



Contraction Rule

The next is T3A

−→ ¬¬(¬¬A ⇒ A)

| (−→ weak)

−→

non − axiom



Contraction Rule

The last one is T4A

−→ ¬¬(¬¬A ⇒ A)

| (−→ ¬)

¬(¬¬A ⇒ A) −→

| (¬ −→)

−→ (¬¬A ⇒ A)

| (−→⇒)

]

¬¬A −→ A

| (−→ weak)

¬¬A −→

| (¬ −→)

−→ ¬A

| (−→ weak)

−→

non − axiom



Contraction Rule

We have considered all possible decomposition trees that do
not involve the Contraction Rule and none of them was a
proof

This shows that the formula

¬¬(¬¬A ⇒ A)

is not provable in LI without (contr −→) rule, i.e. that

Fact

The Contraction Rule can’t be eliminated from LI


