CSE/MAT371 QUIZ 5 SOLUTIONS Fall 2016

QUESTION 1 We define, for $A, b_1, b_2, ..., b_n$ and truth assignment v a corresponding formulas A', $B_1, B_2, ..., B_n$ as follows: $A' = \begin{cases} A & \text{if } v^*(A) = T \\ \neg A & \text{if } v^*(A) = F \end{cases}$ We proved the following **Main Lemma**: For any formula $A = A(b_1, b_2, ..., b_n)$ and any truth assignment v,

if $A', B_1, B_2, ..., B_n$ are corresponding formulas defined above, then $B_1, B_2, ..., B_n \vdash A'$.

Let *A* be a formula $((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a))$, and let *v* be such that v(a) = T, v(b) = F.

Write what Main Lemma asserts for the formula A.

Solution Observe that the formula A is a basic tautology, hence A' = A.

A = A(a, b) and we get $B_1 = a$, $B_2 = \neg b$ and Main Lemma asserts

 $a, \neg b \vdash ((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a)).$

QUESTION 2 Consider the Hilbert system $H_2 = (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \frac{A : (A \Rightarrow B)}{B})$, where $A1 : (A \Rightarrow (B \Rightarrow A)), A2 : ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$ $A3: ((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))).$ We know that the **Main Lemma** and following formula: $(*) : ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$ are **provable** in H_2 .

Part 1. Explain why the **Deduction Theorem** holds for H_2 .

Solution Only axioms A1 and A2 were used in the proof of the **Deduction Theorem**, so its proof is valid in H_2 .

Part 2. The proof of **Completeness Theorem** defines a **method** of efficiently combining $v \in V_A$ while **constructing** the proof of a formula A.

Write all steps of the **Proof 1** as applied to $A : ((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a))$.

Long Solution The completeness part of the **Completeness Theorem** states: if $\models A$, then $\vdash_{H_2} A$.

The formula $A : ((\neg a \Rightarrow \neg b) \Rightarrow (b \Rightarrow a))$ is a tautology, so the assumption $\models A$ holds and we CAN follow the proof. Also by **Part 1.** the Deduction theorem holds for H_2 and we know that the **Main Lemma** also holds and the formula: (*): (($A \Rightarrow B$) \Rightarrow (($\neg A \Rightarrow B$) \Rightarrow B)) is **provable** in H_2 .

By the **Main Lemma** and the assumption that $\models A(a, b)$ any $v \in V_A$ defines formulas B_a , B_b such that

 $B_a, B_b \vdash A.$

The proof is based on a method of using all $v \in V_A$ (there is 4 of them) to carry a process of **elimination** of the hypothesis B_a , B_b that constructs a formal proof of A, i.e. to prove that $\vdash A$.

Elimination of B_b.

We have to cases: v(b) = T or v(b) = F. Let v(b) = T, by definition $B_b = b$ and by the **Main Lemma**, B_a , $b \vdash_{H_2} A$, by **Deduction Theorem** we get $B_a \vdash_{H_2} (b \Rightarrow A)$. Let v(b) = F, by definition, $B_b = \neg b$ and by the **Main Lemma**, B_a , $\neg b \vdash_{H_2} A$, by **Deduction Theorem** we get $B_a \vdash_{H_2} (\neg b \Rightarrow A)$. Now we re-write the formula (*) for A= b, B= A and get that $\vdash_{H_2} ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$. By monotonicity

$$B_a \vdash_{H_2} ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$$

we apply MP twice and get $B_a \vdash_{H_2} A$.

We eliminated B_b . We repeat the same process for B_a as follows.

Elimination of B_a .

We have again to cases: v(a) = T or v(a) = F.

Let v(a) = T, by definition $B_a = a$ and by the **Main Lemma**, $a \vdash_{H_2} A$, by **Deduction Theorem** we get $\vdash_{H_2} (a \Rightarrow A)$. Let v(a) = F, by definition, $B_a = \neg a$ and by the **Main Lemma**, $\neg a \vdash_{H_2} A$, by **Deduction Theorem** we get $\vdash_{H_2} (\neg a \Rightarrow A)$.

Now we re-write the formula (*) for A= a, B= A and get that $\vdash_{H_2} ((a \Rightarrow A) \Rightarrow ((\neg a \Rightarrow A) \Rightarrow A))$. we apply MP twice and get $\vdash_{H_2} A$.

This ends the proof.