PART 1: DEFINITIONS As in Lectures

PART 2: PROBLEMS

PROBLEM 1

Write the following natural language statement:

One likes to play bridge, or from the fact that the weather is good we conclude the following:
one does not like to play bridge or one likes not to play bridge
as a formula of 2 different languages

1. Formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \land, \lor, \Rightarrow\}}$, where $\mathbf{L} \ A$ represents statement ”one likes A”, ”A is liked”.

Solution We translate our statement into a formula

$A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \land, \lor, \Rightarrow\}}$ as follows.

Propositional Variables: a, b

a denotes statement: play bridge,
b denotes a statement: the weather is good

Translation 1

$A_1 = (\mathbf{L}a \lor (b \Rightarrow (\neg Ia \lor \mathbf{L} \neg a)))$

2. Formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \land, \lor, \Rightarrow\}}$.

Solution We translate our statement into a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \land, \lor, \Rightarrow\}}$ as follows.

Propositional Variables: a, b, c

a denotes statement: One likes to play bridge ,
b denotes a statement: the weather is good , and
c denotes a statement: one likes not to play bridge

Translation 2:

$A_2 = (a \lor (b \Rightarrow (\neg a \lor c)))$

PROBLEM 2

CREATE YOUR OWN 3 valued extensional semantics M for the language $\mathcal{L}_{\{\neg, \land, \lor, \Rightarrow\}}$ by defining the connectives $\neg, \land, \lor, \Rightarrow$ on a set $\{F, \bot, T\}$ of logical values.

You must follow the following assumptions

Assumption 1

The third logical value value is intermediate between truth and falsity, i.e. the set of logical values is ordered and we have the following $F < \bot < T$

Assumption 2 T is the designated value
2. The semantics has to **model the situation** in which one "likes" only truth; i.e. in which
\[LT = T \quad \text{and} \quad L \perp = F, \quad LF = F \]

3. The **connectives** \(\neg, \cup, \Rightarrow \) can be defined as you wish, but you have to define them in such a way to make sure that
\[\models_M (LA \cup \neg LA) \]

Part 1 Write down definition of logical connectives

Solution

Here is MY \(M \) semantics - yours can be different!

I define the logical connectives by "shorthand" writing functions defining connectives in form of the "truth tables" and skipping other points of the definition - as I have typed it so many times for you before!

<table>
<thead>
<tr>
<th>L Connective</th>
<th>Negation :</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>(~)</td>
</tr>
<tr>
<td>F</td>
<td>F \quad F \quad T</td>
</tr>
<tr>
<td>F</td>
<td>T \quad F \quad T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Implication</th>
<th>Disjunction :</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Rightarrow)</td>
<td>(\cup)</td>
</tr>
<tr>
<td>F</td>
<td>F \quad F \quad T</td>
</tr>
<tr>
<td>T</td>
<td>T \quad T \quad T</td>
</tr>
</tbody>
</table>

Part 2

Verify whether \[\models_M (LA \cup \neg LA) \] under your semantics - you can use shorthand notation

Solution

We verify
\[LT \cup \neg LT = T \cup F = T, \quad L \perp \cup \neg L \perp = F \cup \neg F = F \cup T = T, \quad LF \cup \neg LF = F \cup \neg F = T \]

PROBLEM 3

Part 1 Verify whether the formulas \(A_1 = (La \cup (b \Rightarrow (\neg La \cup L \neg a))) \) and \(A_2 = (a \cup (b \Rightarrow (\neg a \cup c))) \) have a model/counter model under your semantics \(M \). You can use shorthand notation.

Solution

Given \(A_1 = (La \cup (b \Rightarrow (\neg La \cup L \neg a))) \), and
\[A_2 = (a \cup (b \Rightarrow (\neg a \cup c))) \]

Any \(v \), such that \(v(a) = T \) is a \(M \) **model** for \(A_1 \) and for \(A_2 \) directly from the definition of \(\cup \).
Part 2 Verify whether the following set G is M-consistent. You can use shorthand notation
\[G = \{ \text{La, } (a \cup \neg Lb), \ (a \Rightarrow b), \ b \} \]

Solution
Any v, such that $v(a) = T$, $v(b) = T$ is a M model for G as
\[LT = T, \ (T \cup \neg LT) = T, \ (T \Rightarrow T) = T, \ b = T \]

PROBLEM 4
Let S be the following proof system
\[S = (\mathcal{L}_{\setminus \neg, \lor, \Rightarrow}, \ F, \ \{A1, A2\}, \ \{r1, r2\}) \]
for the logical axioms and rules of inference defined for any formulas $A, B \in F$ as follows

Logical Axioms
A1 $(\text{La} \cup \neg \text{La})$
A2 $(A \Rightarrow \text{La})$

Rules of inference:
\[\begin{align*}
(r1) & \quad A ; B \\
 & \quad (A \cup B) \\
(r2) & \quad A \\
 & \quad \text{L}(A \Rightarrow B)
\end{align*} \]

Part 1
Show, by constructing a proper formal proof that
\[\vdash_S ((\text{Lb} \cup \neg \text{Lb}) \cup \text{L}((\text{La} \cup \neg \text{La}) \Rightarrow b)) \]
You must write comments how each step pot the proof was obtained
Write all steps of the formal proof as follows- write as MANY as you NEED!

Solution Here is the proof B_1, B_2, B_3, B_4
\[\begin{align*}
B_1: & \quad (\text{La} \cup \neg \text{La}) \quad \text{Axiom } A_1 \text{ for A= } a \\
B_2: & \quad \text{L}((\text{La} \cup \neg \text{La}) \Rightarrow b) \quad \text{rule r2 for B=b applied to } B_1 \\
B_3: & \quad (\text{Lb} \cup \neg \text{LAb}) \quad \text{Axiom } A_1 \text{ for A=b} \\
B_4: & \quad ((\text{Lb} \cup \neg \text{Lb}) \cup \text{L}((\text{La} \cup \neg \text{La}) \Rightarrow b)) \quad \text{r1 applied to } B_3 \text{ and } B_2
\end{align*} \]

Part 2
Verify whether the system S is M-sound.
You can use shorthand notation

Solution
Observe that both logical axioms of S are M tautologies
PROBLEM 5 (Extra Credit)

Part 1

If the system S is not sound/ sound under your semantics M then re-define the connectives in a way that such obtained new semantics N would make S sound/not sound.

You can use shorthand notation.

Solution To make rule r_2 sound while preserving the "soundness off axioms we have to modify ONLY the definition of implication. Here is the N semantics implication.

N- Implication

<table>
<thead>
<tr>
<th>⇒</th>
<th>F</th>
<th>⊥</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Remark that it would be hard to convince anybody to use our sound proof system it as it would be hard to convince anybody to adopt our N semantics!

Part 2

Give an example on an infinite, M-consistent set of formulas of the language $L_{\{\neg, \vee, \cup, \Rightarrow\}}$.

Solution

Take G be a set of all propositional variables, i.e. $G = VAR$.

v such that $v(a) = T$ for all $a \in VAR$ is obviously a M model for G and it proves that G is M-consistent.