CSE371 MIDTERM SOLUTIONS Fall 2015

PART 1: DEFINITIONS As in Lectures

PART 2: PROBLEMS

PROBLEM 1

Write the following natural language statement:

One likes to play bridge, or from the fact that the weather is good we conclude the following: one does not like to play bridge or one likes not to play bridge

as a formula of 2 different languages

1. Formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$, where **L** A represents statement "one likes A", "A is liked".

Solution We translate our statement into a formula

 $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ as follows.

Propositional Variables: *a*, *b*

a denotes statement: play bridge,b denotes a statement: the weather is good

Translation 1

$$A_1 = (\mathbf{L}a \cup (b \Rightarrow (\neg \mathbf{I}a \cup \mathbf{L} \neg a)))$$

2. Formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$.

Solution We translate our statement into a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cup, \Rightarrow\}}$ as follows.

Propositional	Variables:	a, b, c
---------------	------------	---------

a denotes statement:	$One \ likes \ to \ play \ bridge \ ,$
\boldsymbol{b} denotes a statement:	the weather is good, and
\boldsymbol{c} denotes a statement:	one likes not to play bridge

Translation 2:

$$A_2 = (a \cup (b \Rightarrow (\neg a \cup c)))$$

Problem 2

CREATE YOUR OWN 3 valued extensional semantics **M** for the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$ by **defining the connectives** \neg, \cup, \Rightarrow on a set $\{F, \bot, T\}$ of logical values.

You must follow the following assumptions

Assumption 1

The third logical value value is **intermediate** between truth and falsity, i.e. the set of logical values is **ordered** and we have the following $F < \perp < T$

Assumption 2 T is the designated value

2. The semantics has to model the situation in which one "likes" only truth; i.e. in which

 $\mathbf{L}T = T$ and $\mathbf{L} \perp = F$, $\mathbf{L}F = F$

3. The connectives \neg , \cup , \Rightarrow can be defined as you wish, but you have to define them in such a way to make sure that

$$\models_{\mathbf{M}} (\mathbf{L}A \cup \neg \mathbf{L}A)$$

Part 1 Write down definition of logical connectives

Solution

Here is MY M semantics - yours can be different!

- I define the logical connectives by "shorthand" writing functions defining connectives in form of the "truth tables" and skipping other points of the definition as I have typed it so many times for you before!
- **L** Connective

Negation :

\mathbf{L}	F	\perp	Т	_	F	\perp	Т
	F	F	Т		Т	F	F

Implication

Disjunction :

\Rightarrow	F	\perp	Т		υ	F	\perp	Т
F	Т	Т	Т	_	F	F	\perp	Т
\perp	T	\perp	Т		\perp	\perp	Т	Т
Т	F	F	Т		Т	Т	T	Т

Part 2

Verify whether $\models_{\mathbf{M}} (\mathbf{L}A \cup \neg \mathbf{L}A)$ under your semantics - you can use shorthand notation

Solution

We verify

 $\mathbf{L}T\cup\neg\mathbf{L}T=T\cup F=T,\quad \mathbf{L}\perp\cup\neg\mathbf{L}\perp=F\cup\neg F=F\cup T=T,\quad \mathbf{L}F\cup\neg\mathbf{L}F=F\cup\neg F=T$

PROBLEM 3

Part 1 Verify whether the formulas $A_1 = (\mathbf{L}a \cup (b \Rightarrow (\neg \mathbf{I}a \cup \mathbf{L}\neg a)))$ and $A_2 = (a \cup (b \Rightarrow (\neg a \cup c)))$ have a model/ counter model under your semantics **M**. You can use **shorthand notation**.

Solution

Given $A_1 = (\mathbf{L}a \cup (b \Rightarrow (\neg \mathbf{I}a \cup \mathbf{L}\neg a)))$, and $A_2 = (a \cup (b \Rightarrow (\neg a \cup c)))$

Any v, such that v(a) = T is a **M model** for A_1 and for A_2 directly from the definition of \cup .

Part 2 Verify whether the following set G is M-consistent. You can use shorthand notation

 $\mathbf{G} = \{ \mathbf{L}a, (a \cup \neg \mathbf{L}b), (a \Rightarrow b), b \}$

Solution

Any v, such that v(a) = T, v(b) = T is a **M model** for **G** as

$$\mathbf{L}T = T, \quad (T \cup \neg \mathbf{L}T) = T, \quad (T \Rightarrow T) = T, \quad b = T$$

PROBLEM 4

Let S be the following **proof system**

$$S = (\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}, \mathcal{F}, \{\mathbf{A1}, \mathbf{A2}\}, \{r1, r2\})$$

for the logical axioms and rules of inference defined for any formulas $A, B \in \mathcal{F}$ as follows

Logical Axioms

- A1 $(\mathbf{L}A \cup \neg \mathbf{L}A)$
- A2 $(A \Rightarrow \mathbf{L}A)$

Rules of inference:

$$(r1) \frac{A;B}{(A\cup B)},$$
 $(r2) \frac{A}{\mathbf{L}(A\Rightarrow B)}$

Part 1

Show, by constructing a proper formal proof that

$$\vdash_S ((\mathbf{L}b \cup \neg \mathbf{L}b) \cup \mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)))$$

You must write comments how each step pot the proof was obtained

Write all steps of the **formal proof** as follows- write as MANY as you NEED!

Solution Here is the proof B_1, B_2, B_3, B_4

$$B_1$$
: (L $a \cup \neg La$) Axiom A_1 for A = a

- B_2 : $\mathbf{L}((\mathbf{L}a \cup \neg \mathbf{L}a) \Rightarrow b)$ rule r2 for B=b applied to B_1
- B_3 : (**L** $b \cup \neg$ **L**Ab) Axiom A_1 for A=b
- $B_4: \quad ((\mathbf{L}b\cup\neg\mathbf{L}b)\cup\mathbf{L}((\mathbf{L}a\cup\neg\mathbf{L}a)\Rightarrow b)) \quad \text{ r1 applied to } B_3 \text{ and } B_2$

Part 2

Verify whether the system S is **M**-sound.

You can use shorthand notation

Solution

Observe that both logical axioms of S are **M** tautologies

A1 is M tautology by definition of the semantics, A1 is M tautology by direct eveluation

Rule r1 is sound because when A = T and B = T we get $A \cup B = T \cup T = T$

Rule 2 is **not sound** because when A = T and B = F (or $B = \bot$) we get $\mathbf{L}(A \Rightarrow B) = \mathbf{L}(T \Rightarrow F) = \mathbf{L}F = F$ or $\mathbf{L}(T \Rightarrow \bot) = \mathbf{L} \perp = F$

PROBLEM 5 (Extra Credit)

Part 1

If the system S is not sound/ sound under your semantics \mathbf{M} then re-define the connectives in a way that such obtained new semantics \mathbf{N} would make S S sound/not sound

You can use shorthand notation

Solution To make rule r2 sound while preserving the "soundness off axioms we have to modify ONLY the definition of implication. Here is the **N** semantics implication

N- Implication

\Rightarrow	F	\perp	Т
F	Т	Т	Т
\perp	T	\perp	Т
Т	Т	T	Т

Remark that it would be hard to convince anybody to use our sound proof system it as it would be hard to convince anybody to adopt our **N** semantics!

Part 2

Give an **example** on an infinite, **M**-consistent set of formulas of the language $\mathcal{L}_{\{\neg, \mathbf{L}, \cup, \Rightarrow\}}$

Solution

Take \mathbf{G} be a set of all propositional variables, i.e. $\mathbf{G} = \text{VAR}$

v such that v(a) = T for all $a \in VAR$ is obviously a M model for G and it proves that G is M-consistent