$\begin{array}{ccc} \text{CSE371} & \text{Q5} & \text{Fall 2015} \\ \text{(20pts} + 5 \text{ extra pts)} \end{array}$

NAME ID: Math/CS

QUESTION 2

H is the following proof system:

$$H = (\mathcal{L}_{\{\Rightarrow,\neg\}}, \mathcal{F}, AX = \{A1, A2, A3, A4\}, MP)$$

A1
$$(A \Rightarrow (B \Rightarrow A)),$$

A2
$$((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$$

A3
$$((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)))$$

A4
$$(((A \Rightarrow B) \Rightarrow A) \Rightarrow A)$$

MP (Rule of inference)

$$(MP) \ \frac{A \ ; \ (A \Rightarrow B)}{B}$$

(1) Prove that H is SOUND under classical semantics.

Solution: Soundness Theorem holds because all axioms of H are tautologies and MP leads from tautologies to a tautology.

(2) Why Deduction Theorem holds for H?

Solution: System H extends by one extra axiom A3 the proof system H_1 for which we have proved the deduction theorem.

(3) Is H COMPLETE?

Solution: YES. Axioms A1, A2, A3 of H are axioms of the system H_2 from Chapter 8. It is stated in Chapter 8 and proved in Chapter 9 that Completeness Theorem holds for H_2 .

4. Prove the following: $A \vdash_H (A \Rightarrow A)$

Solution 1: Proof is as follows.

$$B_1 = (A \Rightarrow (A \Rightarrow A))$$

Axiom A1 for $B = A$

$$B_2 = A$$

Hypothesis

$$B_3 = (A \Rightarrow A)$$

 $B_1, B_2 \text{ and MP}$

Solution 2: We use Deduction Theorem.

 $A \vdash_H (A \Rightarrow A)$ if and only if $\vdash_H (A \Rightarrow (A \Rightarrow A))$, what is true because $(A \Rightarrow (A \Rightarrow A))$ is axiom A1. The proof is one element sequence:

$$B_1 = A \Rightarrow (A \Rightarrow A)$$

Axiom A1 for $B = A$

QUESTION 2

Complete the steps $B_1, ..., B_5$ of the formal proof in H_2 of $(B \Rightarrow \neg \neg B)$ by writing all details for each step of the proof.

You can use the following already proved facts:

F1
$$(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_2} (A \Rightarrow C)$$

F2
$$\vdash_{H_2} (\neg \neg B \Rightarrow B)$$

Here are the steps

$$B_1 = ((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))$$

$$B_2 = (\neg \neg \neg B \Rightarrow \neg B)$$

$$B_3 = ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)$$

$$B_4 = (B \Rightarrow (\neg \neg \neg B \Rightarrow B))$$

$$B_5 = (B \Rightarrow \neg \neg B)$$

Solution The completed comments are as follows.

$$B_1 = ((\neg \neg \neg B \Rightarrow \neg B) \Rightarrow ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B))$$

Axiom A3 for $A = B, B = \neg \neg B$

$$B_2 = (\neg \neg \neg B \Rightarrow \neg B)$$
 Already proved fact: $\vdash_{H_2} (\neg \neg B \Rightarrow B)$ for $B = \neg B$

$$B_3 = ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B)$$

 B_1, B_2 and MP, i.e.

$$\frac{(\neg\neg\neg B\Rightarrow\neg B);((\neg\neg\neg B\Rightarrow\neg B)\Rightarrow((\neg\neg\neg B\Rightarrow B)\Rightarrow\neg\neg B))}{((\neg\neg\neg B\Rightarrow B)\Rightarrow\neg\neg B)}$$

$$B_4 = (B \Rightarrow (\neg \neg \neg B \Rightarrow B))$$

Axiom A1 for $A = B, B = \neg \neg \neg B$

$$B_5 = (B \Rightarrow \neg \neg B)$$

 B_3, B_4 and already proved fact:
 $(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_2} (A \Rightarrow C)$ for
 $A = B, B = (\neg \neg \neg B \Rightarrow B), C = \neg \neg B$ i.e.

$$(B \Rightarrow (\neg \neg \neg B \Rightarrow B)), ((\neg \neg \neg B \Rightarrow B) \Rightarrow \neg \neg B) \vdash_{H_2} (B \Rightarrow \neg \neg B)$$

QUESTION 3

Use Deduction Theorem to prove

F1
$$(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_2} (A \Rightarrow C)$$

Solution

$$(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_2} (A \Rightarrow C)$$
 iff $(A \Rightarrow B), (B \Rightarrow C), A \vdash_{H_2} C$

$$B_1 \quad (A \Rightarrow B) \quad \text{Hyp}$$

$$B_2$$
 A Hyp

$$B_3$$
 B MP on B_2, B_1 item[] B_4 ($B \Rightarrow C$) Hyp

$$B_5$$
 C MP on B_3, B_4