Important There is no recitations, but I will cover solutions to homework assignments and held questions/answers sessions each week in class.

BOOKS

Main text: Anita Wasilewska, An Introduction to Classical and Non-Classical Logics, 2007, SUNY, Stony Brook, NY.

All book chapters, and lecture slides on are posted on the course webpage; please print them and bring to class.

Additional texts:

Any Logic Textbook you find in the Library

Course Goal The goal of the course is to make student understand the need of, and to learn the formality of logic. I will progress relatively slowly, making sure that the pace is appropriate for the undergraduate class. But it doesn’t mean that you can just come to class and listen without doing
work at home!! You have to go over the text in proper chapters; in fact to
go over and over again! The book is written with students on my mind so
that they can read and learn by themselves, even before coming to class.
For sure, it is essential to study after the class.
The book, and the course is developed to teach not only intuitive un-
derstanding of different logics, but (and mainly) to teach formal logic as
scientific subject, with its language, definitions and problems.

Workload There will be 4 quizzes, one midterm and a final examination.
The consistency of your efforts and work is the most important for this course.

None of the grades will be curved.

Quizzes: total 100pts There will be 4 quizzes (25 minutes), 25 points each.
The problems will be taken from Problems Solved or listed in the book
and Homework Assignments located at the end of the chapters of the book

Quizzes and Tests are **closed book** examinations.

Midterm (100pts) Midterm will cover material from Q1 and Q2.

Final (200pts) Final test will cover some material from the midterm, but
mainly (70%) the material covered after the midterm, i.e. material cov-
ered by Q3 and Q4. It is REGULAR TEST scheduled at the regular
UNIVERSITY TIME for finals.

Previous TESTS and Quizzes Posted a collection of past Quizzes and
Tests on the course Webpage.

They are designed to help you to learn what you have learned and what you
still don’t understand from the material covered by the test. You can take
them for your own practice (don’t need to submit it)

Practice tests policy Practice quizzes and tests are designed to help you
to learn what and how much you have learned and what you still don’t
understand from the material covered by the test.

Final grade computation You can earn up to 400 points + 20 extra points
= 420 points during the semester.

None of the grades will be curved The grade will be determined in the
following way:

of earned points divided by 4 = % grade.
The % grade is translated into a letter grade in a standard way i.e.

100 – 95 % is A, 94 – 90 is A−,
89 – 86% is B+, 85 – 83 % is B, 82 – 80 % is B−,
79 – 76 % is C+, 75 – 73 % is C, 72 – 70 % is C−,
69 – 60 % is D range and F is below 60%.
Quizzes and Tests schedule (can be changed- changes will be advertised on the course web Page)

Q1 Thursday, September 19
Q2 Thursday, October 17
MIDTERM Thursday, October 24 in class
Q3 Thursday, November 14
Thanksgiving Break November 27 -29
Q4 Tuesday, December 3
FINAL The final will be given during the University assigned place and time during the FINALS period December 10-16

COURSE CONTENT The course will to cover in depth the following subjects.

Part one Motivation, history, syntax and semantics for classical propositional calculus. Formal languages, formal definitions of model, counter model, tautology. Semantics for some three valued logics.

Part two Intuitive Introduction to First Order Logic: first Order languages and basic tautologies.

Part three Formal deductive systems, called also proof systems. General definition and examples. Definition of a formal proof. Relationship between proof systems and their semantics, i.e general definition of notions of soundness and completeness of a given proof systems relatively to given semantics. Definition of a logic as a complete proof system.

Part four: Hilbert style proof systems for classical propositional logic. Proofs of DEDUCTION theorem, and two different proofs of the COMPLETE-NESS theorem.

Part six A Hilbert style proof system for Intuitionistic Logic. Relationship between Intuitionistic and Classical logics.

Part seven Automated proof systems 2: Gentzen proof system for Intuitionistic Logic. Heuristic decision procedures.

Part eight Formal Introduction to First Order Logic.
Part nine A Hilbert style proof systems for Modal Logics S4 and S5. Relationships with Intuitionistic Logic.

ACADEMIC INTEGRITY STATEMENT (Adopted by the Undergraduate Council September 12, 2006)
Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person’s work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

Stony Brook University Syllabus Statement If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.
Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.sunysb.edu/ehs/fire/disabilities.shtml