QUESTION 1 (10pts)

1. Write definition of restricted domain quantifiers

2. Prove de Morgan Laws for restricted domain quantifiers

List all logical equivalences you used in your proof
QUESTION 2 (5pts)

Prove that the law \((\forall x A(x) \Rightarrow \exists x A(x))\) does not hold for the restricted domain quantifiers.
QUESTION 3 (10pts)

Here is a real mathematical statement called **Pumping Lemma**

For any language \(L \),

IF \(L \) is infinite and regular,

THEN there is \(n \geq 1 \) such that for any word \(w \in L \) with lengths greater than \(n \), i.e. \(|w| \geq n\) there are \(x, y, z \in \Sigma^* \) such that \(w \) can be re-written as \(w = xyz \) and \(y \neq e \), and \(xy^n z \in L \) for all \(n \geq 0 \)

Part 1

Write the Pumping Lemma **symbolically** as MATHEMATICAL statement that uses logical connectives and restricted domain quantifiers symbols

Use \(\inf(L) \) to denote ” \(L \) is infinite language” and \(\text{reg}(L) \) for ”\(L \) is regular language”
Part 2

Negate carefully and fully your mathematical statement

"Fully" means that you have to negate all "inside" components applying PROPER LAWS of restricted quantifiers and propositional connectives to obtain a logically equivalent statement.
SHORT QUESTIONS (5 points)

Circle proper answer. Write one sentence justification

1. For any predicates $A(x)$, $B(x)$,
 $\neg \forall x (A(x) \cap B(x)) \equiv (\exists x \neg A(x) \cup \exists x \neg B(x))$
 JUSTIFY:
 \[y \ n \]

2. $\forall x (A(x) \cap B(x)) \equiv (\forall x A(x) \cap \forall x B(x))$
 JUSTIFY:
 \[y \ n \]

3. $\exists x (A(x) \cup B(x)) \equiv (\exists x A(x) \cup \exists x B(x))$
 JUSTIFY:
 \[y \ n \]

4. $\exists x (x < 1) \cup 2 + 2 = 4$ is a true statement in a set of natural numbers.
 JUSTIFY:
 \[y \ n \]

5. $\neg \exists n \exists x (x < \frac{1+\sigma}{n+1}) \equiv \forall n \exists x (x \geq \frac{1+\sigma}{n+1})$
 JUSTIFY:
 \[y \ n \]

6. $\exists x A(x) \Rightarrow \forall x A(x)$ is a predicate tautology
 JUSTIFY:
 \[y \ n \]

7. $\neg \forall x (A(x) \cap B(x)) \equiv (\forall x A(x) \cup \exists x \neg B(x))$
 JUSTIFY:
 \[y \ n \]

8. The formula $\forall x (C(x) \cap F(x))$ represents sentence: *All birds can fly* in in the domain $X \neq 0$.
 JUSTIFY:
 \[y \ n \]

9. For any predicates $A(x)$, B, (this means that B does not contain the variable x) the formula
 $\forall x (A(x) \Rightarrow B) \Rightarrow (\exists x A(x) \Rightarrow B)$ is a predicate tautology.
 JUSTIFY:
 \[y \ n \]

10. $\forall x (A(x) \cup B(x)) \equiv (\forall x A(x) \cup \forall x B(x))$
 JUSTIFY:
 \[y \ n \]