Supervised Learning on Bakary Data Using WEKA

Waleed Pervaiz
CSE 352

Outline

- Classification Tool: WEKA
- Waikato Environment for Knowledge Analysis by The University of Waikato.
- Available on the internet at: http://www.cs.waikato.ac.nz/~ml/weka/index.html

Raw Data

- The Raw data does give us a lot of information.
- However, in this form most of this information is useless and doesn't tell us anything.

K	-	M	N	0	P	Q	R	S
0.80	0.02	4318	7		4		0.1	7.5
0.48	0.04	29649	10	26	201	62.3	0.7	10.7
0.01	0.00	5726	14	2	7005		0.4	4.1
0.40	0.01	29379	13		6407		1.7	10.1
0.03	0.03	2158	1919	6112	3	9.2	7.9	
0.07	0.00	324570	13715	10617	42	39.4	57.1	9.6
0.01	0.02	16244	31969	106331	302	116.2	112.5	
0.01	0.06	1632	2314	6	6		12.5	2.7
0.09	0.00	791	2477	6	2		5.8	4.5
0.00	0.01	13165	12521	5277	22	59.5	47.0	
0.84	0.06	3321	25	7	9	9.11	1.6	20.1
2.45	0.06	2888	111	21	51	80.5	0.6	115.5
4.23	0.01	209851	23	76	331	121	3.0	79.7
4.98	0.06	38791	73	27	96	22.1	1.2	64.7
8.03	0.08	13769	11	11	5	25.5	0.5	105.2
2.65	0.08	275	37		4		0.6	49.9
3.45	0.03	184	13	7	2		0.6	6.8
9.65	0.08	652	10	6	288	185	0.7	60.1
1.37	0.03	314	9		5	1111		16.6
0.66	0.09	1222	16	3	5		0.3	13.1
K20	P205	S	Zn	Pb	Cu	As	Cd	Cr

- To prepare data for pre-processing the following steps were taken.
- Any attributes that have missing data (i.e. more than 20%) will be removed.
- The following attributes were thus removed:
 - Pb
 - As
 - Cd
 - Ni
 - Sc
 - Co
 - Li
 - Mo

- All other attributes that are missing values were filled in with their averages (mean).
- Missing values for the following attributes were inserted:
 - TiO2 (Carbonates) Mean: 0.005 (Inserted at E58 and E62)
 - P2O5 (Carbonates) Mean: 0.74 (Inserted at L33)
 - S (Carbonates) Mean: 423 (Inserted at M52, M66, M75)
 - Zn (Carbonates) Mean: 16 (Inserted at N46, N53, N67)
 - Cu (Carbonates) Mean: 3 (Inserted at O37, O43, O46, O48, O52, O55, O57, O60, O63, O67)
 - Cr (Galene) Mean: 9.6 (Inserted at P85, P87)
 - Cr (Spahlerite) Mean: 3.6 (Inserted at P90)
 - V (Carbonates) Mean: 5.2 (Inserted at Q43, Q48, Q51, Q52, Q60, Q62, Q66, Q71, Q75)
 - V (Galene) Mean: 2.5 (Inserted at Q86)
 - V (Spahlerite) Mean: 9.4 (Inserted at Q90)

- For easier reading, class values were replaced with simpler values.
- The following values were changed:
 - R. carbonatées changed to C1
 - Pyrite changed to C2
 - Chalcopyrites changed to C3
 - Galène changed to C4
 - Spahlerite changed to C5
 - Sédiments terrigènes changed to C6

• Using WEKA, we remove any noisy data that may unnecessarily skew our data and results.

Discretization

• With all the missing data filled in, the noisy data eliminated, we discretize the data using the WEKA tool. (3 equal frequency bins)

Discretization

- Values in the bins were then replaced by specific words:
 - Low
 - Medium
 - High

Label	Count
Low	32
Medium	38
High	28

- This helps in understanding data better.
- Decision Tree algorithms will still work with these non-numerical values.

Experiments

- The following experiments will be carried out on our data:
 - Full Learning: Construction of decision trees characterizing all classes.
 - Contrast Learning: Using all attributes to compare class C1 with the rest of the classes.
 - Limited Learning: Construction of decision tree using only the major attributes.

Experiment 1 - Results

Experiment 1: Full Learning

Decision Trees were generated using the J48

algorithm.

```
Classifier output
J48 unpruned tree
Ta = Low
   T_{i11} = T_{iOW}
   | Fe203* = Low: C1 (29.0)
       Fe203* = Medium: C1 (23.0)
       Fe203* = High
       | Cu = Low: C1 (1.0)
        | Cu = Medium: C2 (2.0)
      | Cu = High
      | | Cr = Low: C1 (3.0/1.0)
      | | Cr = Medium: C1 (3.0/1.0)
      | | Cr = High: C4 (3.0)
| Lu = Medium: C1 (4.0)
Lu = High: C1 (4.0/2.0)
Ta = Medium
| CaO = High: C1 (10.0)
| CaO = Medium: C1 (3.0/1.0)
| CaO = Low: C2 (4.0/2.0)
Ta = High
| Zn = Low: C1 (1.0)
| Zn = Medium: C6 (3.0)
| Zn = High: C6 (5.0)
Number of Leaves :
Size of the tree :
                       22
```


Discriminant Rules

- We got the following discriminant rules.
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="Low" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="Medium" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="Low" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="Medium" THEN Class="C2"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="High" AND Cr="Low" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="High" AND Cr="Medium" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="High" AND Cr="High" THEN Class="C4"

More Discriminant Rules

- We got the following discriminant rules.
 - IF Ta="Low" AND Lu="Medium" THEN Class="C1"
 - IF Ta="Low" AND Lu="High" THEN Class="C1"
 - IF Ta="Medium" AND CaO="High" THEN Class="C1"
 - IF Ta="Medium" AND CaO="Medium" THEN Class="C1"
 - IF Ta="Medium" AND CaO="Low" THEN Class="C2"
 - IF Ta="High" AND Zn="Low" THEN Class="C1"
 - IF Ta="High" AND Zn="Medium" THEN Class="C6"
 - IF Ta="High" AND Zn="High" THEN Class="C6"
- Predictive Accuracy Determined: 70.58%

Experiment 2 - Results

Experiment 2: Contrast Learning

Decision Trees were generated using the J48

algorithm.

```
Classifier output
J48 unpruned tree
Fe203* = Low: C1 (34.0)
Fe203* = Medium: C1 (32.0)
Fe203* = High
  CaO = High: C1 (4.0)
  CaO = Medium
| | Rb = Medium: NOT C1 (3.0/1.0)
| | Rb = Low: C1 (1.0)
| | Rb = High: C1 (3.0)
| CaO = Low
| | Zn = Low: C1 (2.0)
| | Zn = Medium: NOT C1 (8.0)
| | Zn = High: NOT C1 (11.0)
Number of Leaves :
Size of the tree :
Time taken to build model: 0 seconds
=== Evaluation on test split ===
=== Summarv ===
Correctly Classified Instances
                                       33
                                                       97.0588 %
Incorrectly Classified Instances
                                                        2.9412 %
```


Discriminant Rules

- We got the following discriminant rules.
 - IF Fe2O3="Low" THEN Class="C1"
 - IF Fe2O3="Medium" THEN Class="C1"
 - IF Fe₂O₃="High" AND CaO="High" THEN Class="C₁"
 - IF Fe2O3="High" AND CaO="Medium" AND Rb="Medium" THEN Class="NOT C1"
 - IF Fe₂O₃="High" AND CaO="Medium" AND Rb="Low" THEN Class="C₁"
 - IF Fe₂O₃="High" AND CaO="Medium" AND Rb="High" THEN Class="C₁"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Low" THEN Class="C₁"

More Discriminant Rules

- We got the following discriminant rules.
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Medium"
 THEN Class="NOT C₁"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="High" THEN Class="NOT C₁"

Predictive Accuracy Determined: 97.06%

Experiment 3 - Results

Experiment 3: Using Major Attributes

Decision Trees were generated using the J48

algorithm.

```
Classifier output
J48 unpruned tree
Fe203* = Low: C1 (34.0)
Fe203* = Medium: C1 (32.0)
Fe203* = High
| CaO = High: C1 (4.0)
| CaO = Medium: C1 (7.0/2.0)
 CaO = Low
| I | Zn = Low: C1 (2.0)
  I Zn = Medium
   | S = Low: C6 (1.0)
   | | S = Medium: C6 (2.0)
   | | S = High: C2 (5.0/2.0)
  | Zn = High: C6 (11.0/6.0)
Number of Leaves :
Size of the tree :
                       13
Time taken to build model: 0 seconds
=== Evaluation on test split ===
=== Summarv ===
Correctly Classified Instances
                                                        82.3529 %
                                                        17.6471 %
Incorrectly Classified Instances
Vonno atotiatio
```


Discriminant Rules

- We got the following discriminant rules.
 - IF Fe2O3="Low" THEN Class="C1"
 - IF Fe2O3="Medium" THEN Class="C1"
 - IF Fe₂O₃="High" AND CaO="High" THEN Class="C₁"
 - IF Fe2O3="High" AND CaO="Medium" THEN Class="C1"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Low" THEN Class="C₁"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Medium" AND S="Low" THEN Class="C6"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Medium" AND S="Medium" THEN Class="C6"

More Discriminant Rules

- We got the following discriminant rules.
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Medium" AND S="High" THEN Class="C₂"
 - IF Fe2O3="High" AND CaO="Low" AND Zn="High" THEN Class="C6"

Predictive Accuracy Determined: 82.35%

Discretization for Dataset 2

• With all the missing data filled in, the noisy data eliminated, we use another method of data discretization. (4 equal width bins)

Experiments with Dataset 2

- The following experiments will be carried out on our data:
 - Full Learning: Construction of decision trees characterizing all classes.
 - Contrast Learning: Using all attributes to compare class
 C1 with the rest of the classes.
 - Limited Learning: Construction of decision tree using only the major attributes.

Experiment 1 Dataset 2- Results

Experiment 1: Full Learning

Decision Trees were generated using the J48

algorithm.

```
Classifier output
J48 unpruned tree
Ta = Low
   T_{-11} = T_{-0}w
    | Fe203* = Low: C1 (29.0)
     Fe203* = Medium: C1 (23.0)
     Fe203* = High
     | Cu = Low: C1 (1.0)
       | Cu = Medium: C2 (2.0)
     | Cu = High
   | | Cr = Medium: C1 (3.0/1.0)
       | Cr = High: C4 (3.0)
   Lu = Medium: C1 (4.0)
   Lu = High: C1 (4.0/2.0)
Ta = Medium
| CaO = High: C1 (10.0)
   CaO = Medium: C1 (3.0/1.0)
   CaO = Low: C2 (4.0/2.0)
Ta = High
| Zn = Low: C1 (1.0)
| Zn = Medium: C6 (3.0)
| Zn = High: C6 (5.0)
Number of Leaves :
Size of the tree :
```


Discriminant Rules

- We got the following discriminant rules.
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="Low" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="Medium" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="Low" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="Medium" THEN Class="C2"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="High" AND Cr="Low" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="High" AND Cr="Medium" THEN Class="C1"
 - IF Ta="Low" AND Lu="Low" AND Fe2O3="High" AND Cu="High" AND Cr="High" THEN Class="C4"

More Discriminant Rules

- We got the following discriminant rules.
 - IF Ta="Low" AND Lu="Medium" THEN Class="C1"
 - IF Ta="Low" AND Lu="High" THEN Class="C1"
 - IF Ta="Medium" AND CaO="High" THEN Class="C1"
 - IF Ta="Medium" AND CaO="Medium" THEN Class="C1"
 - IF Ta="Medium" AND CaO="Low" THEN Class="C2"
 - IF Ta="High" AND Zn="Low" THEN Class="C1"
 - IF Ta="High" AND Zn="Medium" THEN Class="C6"
 - IF Ta="High" AND Zn="High" THEN Class="C6"
- Predictive Accuracy Determined: 79.59%

Experiment 2 Dataset 2 - Results

Experiment 2: Contrast Learning

Decision Trees were generated using the J48

algorithm.

```
Classifier output
=== Classifier model (full training set) ===
J48 unpruned tree
Fe203* = Low: C1 (34.0)
Fe203* = Medium: C1 (32.0)
Fe203* = High
  CaO = High: C1 (4.0)
  CaO = Medium
        Rb = Medium: NOT C1 (3.0/1.0)
     Rb = Low: C1 (1.0)
| Rb = High: C1 (3.0)
 CaO = Low
  I = Zn = Low: C1 (2.0)
  Zn = Medium
  | | Tb = Low: NOT C1 (2.0)
  | | Tb = Medium: C1 (1.0)
  | | Tb = High: NOT C1 (5.0)
  | Zn = High: NOT C1 (11.0)
Number of Leaves :
Size of the tree :
Time taken to build model: 0 seconds
```


Discriminant Rules

- We got the following discriminant rules.
 - IF Fe2O3="Low" THEN Class="C1"
 - IF Fe2O3="Medium" THEN Class="C1"
 - IF Fe₂O₃="High" AND CaO="High" THEN Class="C₁"
 - IF Fe2O3="High" AND CaO="Medium" AND Rb="Medium" THEN Class="NOT C1"
 - IF Fe₂O₃="High" AND CaO="Medium" AND Rb="Low" THEN Class="C₁"
 - IF Fe₂O₃="High" AND CaO="Medium" AND Rb="High" THEN Class="C₁"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Low" THEN Class="C₁"

More Discriminant Rules

- We got the following discriminant rules.
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Medium" AND Tb="Low" THEN Class="NOT C₁"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Medium" AND Tb="Medium" THEN Class="C₁"
 - IF Fe2O3="High" AND CaO="Low" AND Zn="Medium" AND Tb="High" THEN Class="NOT C1"
 - IF Fe2O3="High" AND CaO="Low" AND Zn="High" THEN Class="NOT C1"

Predictive Accuracy Determined: 89.79%

Experiment 3 Dataset 2- Results

• Experiment 3: Using Major Attributes

Decision Trees were generated using the J48

algorithm.

```
Classifier output
J48 unpruned tree
Fe203* = Low: C1 (34.0)
Fe203* = Medium: C1 (32.0)
Fe203* = High
| CaO = High: C1 (4.0)
| CaO = Medium: C1 (7.0/2.0)
I \quad CaO = Low
| I | Zn = Low: C1 (2.0)
| | Zn = Medium: NOT C1 (8.0/1.0)
| | Zn = High: NOT C1 (11.0)
Number of Leaves :
Size of the tree :
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summarv ===
Correctly Classified Instances
                                                          94.898
Incorrectly Classified Instances
                                          0.8458
Kappa statistic
Mean absolute error
                                          0.0607
Root mean squared error
                                          0.196
```


Discriminant Rules

- We got the following discriminant rules.
 - IF Fe2O3="Low" THEN Class="C1"
 - IF Fe2O3="Medium" THEN Class="C1"
 - IF Fe₂O₃="High" AND CaO="High" THEN Class="C₁"
 - IF Fe2O3="High" AND CaO="Medium" THEN Class="C1"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Low" THEN Class="C₁"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="Medium" THEN Class="NOT C₁"
 - IF Fe₂O₃="High" AND CaO="Low" AND Zn="High" THEN Class="NOT C₁"

More Discriminant Rules

• Predictive Accuracy Determined: 94.90%

Accuracy Analysis for both Datasets

• Here is a comparison of the accuracy achieved with each Dataset.

	Dataset #1	Dataset #2
Experiment 1	70.58%	79.59%
Experiment 2	97.06%	89.79%
Experiment 3	82.35%	94.90%

- Dataset 1 was carried out using 3 bins equal frequency discretization.
- Dataset 2 was carried out using 4 bins equal width discretization.

Conclusion & Thoughts

- High accuracy for a particular value can sometimes be misleading since there is a lot of data (77 records) for C1 as compared to data (21 records) for other classes.
- WEKA produces different rules depending on the techniques used for data preparation.
- Dataset 2 generally had better accuracy. Thus, we can conclude that the 4-bin equal width method was slightly more accurate than the 3-bin equal frequency method.
- Comparing classes with each other gave the best overall accuracy. (i.e. comparing C1 with all other classes)