AI in Games

By:
Patrick Wamsley
Xingyu Mu
Xinglin Zhu
Tingyi Zhao
CSE 352 - Prof. Wasilewska
Team 5
Sources

- http://www.science4all.org/article/advanced-game-theory-overview/
- http://www.alanturing.net/turing_archive/pages/Reference%20Articles/BriefHistofComp.html
- https://deepmind.com/blog/alphago-zero-learning-scratch/
Overview

- Context
- A history of AI in Games
- Strategies for AI in Games
- Examples
- Game Development View
- Final remarks
Context

- How is AI used in games?
 - Creating human-like opponents or behaviors
 - Chess
 - Fighting Games
 - Solving Games
 - Complete Information Games (Chess)
 - Incomplete Knowledge Games (Poker)

A simplified poker game tree.

Source: http://www.science4all.org/article/advanced-game-theory-overview/

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/ChessCastlingMovie_en.svg/210px-ChessCastlingMovie_en.svg.png
Context

- How is gamification useful in AI research?
 - Games provide a user-friendly framework for testing AI.
 - Genetic Algorithms
 - Machine Learning

Source: http://www.goatstream.com/research/papers/SA2013/
A history of AI in Games

- **Heuristic AI** (simple rule following, not genuine intelligence)
 - In 1951, AI was used to beat the game Nim (A math strategy game)
 - In 1972, Pong was released
 - AI played as an opponent
 - More and more advanced Heuristic AIs developed as computing power became more available
 - Almost every video game uses Heuristic AI in some way

- **True AI**
 - More recently, advanced AI techniques such as ML, RL, NN have been used in Game Dev.
 - Improving motion control (ML)
 - Design and Balance of Games (2012) (ML)
Heuristic AI in games

- The simplest version of AI
- Rule following
- A simple Pong AI implementation:

```java
private void updatePaddlePosition() {
    int direction = EQUATOR - ball.getY();
    if (direction < 0) {
        paddle.setDirection(Direction.DOWN);
    } else if (direction > 0) {
        paddle.setDirection(Direction.UP);
    } else {
        paddle.stop();
    }
}
```
AI in fighting games

Like Street Fighters V or KOF

AI in fighting games

- AI level difficulty – based on the AI’s frequency of decision making
 - Easy AI:
 - Less desire to defend or attack
 - Limited Combos
 - Hard AI:
 - Increased desire to move
 - Higher level combo
Fan made AI

- Usually designed using the concept of **counter-measure**
Fan made AI

- Designed with individual characters in mind
- Optimize play of each character
- Create best counters to enemy moves
 - choose moves which have no penalty

EX: When character A jumps, but has no skill that can hit character B in time, character B, using fan-made AI, counters with dragon punch.

- Similar to Deep Blue AI in Chess
Source: Touhou 12.3 東方非想天則 ～ 超弩級ギニョルの謎を追え Screenshot
Why have AI in fighting games?

- Default AI: Helps new players to get started
- Fan-made AI: Helps high-level players practice specific counters against different characters
- AI is critical to supporting players in fighting games
AI in collection trading card games

- Used in HearthStone and Magic the Gathering
- Increases enjoyment/difficulty
- Lightweight
- Incomplete implementation

Source: https://edge.alluremedia.com.au/m/k/2016/03/cardgen2.png
Something Else...

Source: https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaGo Zero
- reinforcement learning
- playing games against itself

Is such advanced AI needed?
AI in Game Development

Game Design:
- Progressive Gameplay
- Emergent Gameplay

AI Framework:
- FSM (Finite State Machine)
- DT (Decision Tree)
- BT (Behavior Tree)

- No more if/else
- Let’s try LINQ!
 - brief and easier to read

In “Designing Emergent AI”

Behavior Tree In Game Development

- What are BTs?
- How are BTs used?
- Opening UE4...

Source: Unreal Engine 4 Screenshot
Incomplete Information Game Solving AI

- Incomplete information games are games played with incomplete information
 - Rock / Paper / Scissors
 - Poker
- Game theory can be used to find optimal (Nash Equilibrium) solutions
 - Rock / Paper / Scissors: Randomly select each \(\frac{1}{3} \) of the time
 - Poker: ... extremely complicated
 - Hand selection
 - Check/Call/Fold/Bet/Raise
 - Accounting for position
 - Bet sizing
 - Optimal Value: Bluff ratio
- Attempts to Solve Poker:
 - Neural Networks, Repetitive Play (Brute force-esque)
Incomplete Information Game Solving AI

- Libratus (2017)
 - First Poker program to outperform professional HUNL specialists
 - Over a sample of 120,000 hands (a reasonable sample size)
 - Win-rate of 14.7 BB / 100 hands (extremely high)
 - Does not have a fixed strategy
 - Procedurally generates a strategy
 - "Learns" the best hands to use as bluffs, value bets
 - Considers "removal effects" (Holding a card makes it impossible for opponent to hold)
 - Follows game theory concepts (Balance, optimal Value:Bluff)
 - Randomization (in hand selection, hand play, bet sizing)
 - Creators are looking for applications in Cybersecurity, business negotiation, and medicine
Closing remarks

- AI is constantly being used to improve the enjoyment in video games
 - Started with simple rule following
 - Now we see Machine Learning being used

Source:

Source: Touhou 12.3 Screenshot
Closing remarks

- AI is advancing rapidly
 - 1980s Chess, 2015 Go, 2017 HUNL Poker
 - In more complex incomplete information games, human thinking still holds an edge
 - This edge will continue to shrink as more AI is developed
 - Will AI ever be able to beat any human at any strategy game?

Source: http://www.onlinepokeracademy.com/img/pokerstars_screen5.jpg
Closing remarks

- Games are used to advance AI algorithms
 - Efficient for testing
 - Define clear objectives
 - Applications of gamified AI: cybersecurity, business, medicine

Source: