
cse352
Artificial Intelligence

Professor Anita Wasilewska

AI LOGIC LECTURE

Logic Chapter:
Introduction to Classical Logic Languages and Semantics

Logic Chapter
Introduction to Classical Logic Languages and Semantics

Part 1: Classical Logic Model

Part 2: Propositional Language

Part 3: Propositional Semantics

Part 4: Examples of Propositional Tautologies

Part 5: Predicate Language

Part 6: Predicate Tautologies- Laws for Quantifiers

Logic Chapter
Introduction to Classical Logic Languages and Semantics

Part 5: Predicate Language

Predicate Language

We define a predicate language L following the pattern
established by the definitions of symbolic and propositional
language.

The predicate language is much more complicated in its
structure.

Its alphabet A is much richer.

The definition of its set of formulas F is more complicated.

In order to define the set F define an additional set T, called
a set of all terms of the predicate language L.

We single out this set T of terms not only because we need it
for the definition of formulas, but also because of its role in the
development of other notions of predicate logic.

Predicate Language Definition

Definition

By a predicate language L we understand a triple

L = (A, T, F)

where A is a predicate alphabet

T is the set of terms, and F is a set of formulas

Alphabet Components

Alphabet A

The components of A are as follows

1. Propositional connectives

¬, ∩, ∪, ⇒, ⇔

2. Quantifiers ∀, ∃

∀ is the universal quantifier, and ∃ is the existential
quantifier

3. Parenthesis (and)

Alphabet Components

4. Variables

We assume that we have, as we did in the propositional case
a countably infinite set VAR of variables

The variables now have a different meaning than they had in
the propositional case

We hence call them variables, or individual variables

We put
VAR = {x1, x2,}

5. Constants

The constants represent in ”real life” concrete elements of
sets. We assume that we have a countably. infinite set C of
constants

C = {c1, c2, ...}

Alphabet Components

6. Predicate symbols

The predicate symbols represent ”real life” relations

We denote them by P, Q, R, ..., with indices, if necessary

We use symbol P for the set of all predicate symbols

We assume that P is countably infinite and write

P = {P1,P2,P3,}

Alphabet Components

Logic notation

In ”real life” we write symbolically x < y to express that
element x is smaller then element y according to the two
argument order relation <.

In the predicate language L we represent the relation < as a
two argument predicate P ∈ P.

We write P(x, y) as a representation of ”real life” x < y.

The variables x, y in P(x, y) are individual variables from the
set VAR.

Mathematical statements n < 0, 1 < 2, 0 < m are
represented in L by P(x, c1), P(c2, c3), P(c1, y),
respectively,

where c1, c2, c3 are any constants and x, y any variables.

Alphabet Components

7. Function symbols

The function symbols represent ”real life” functions

We denote function symbols by f , g, h, ..., with indices, if
necessary

We use symbol F for the set of all function symbols

We assume that F is countably infinite and write

F = {f1, f2, f3,}

Set T of Terms

Definition

Terms are expressions built out of function symbols and
variables.

They describe how we build compositions of functions.

We define the set T of all terms recursively as follows.

1. All variables are terms;

2. All constants are terms;

3. For any function symbol f ∈ F representing a function on n
variables, and any terms t1, t2, ..., tn, the expression
f(t1, t2, ..., tn) is a term;

4. The set T of all terms of the predicate language L is the
smallest set that fulfills the conditions 1. - 3.

Example

Example

Here are some terms of L

h(c1), f(g(c, x)), g(f(f(c)), g(x, y)),

f1(c, g(x, f(c))), g(g(x, y), g(x, h(c)))

Observe that to obtain the predicate language representation
of for example x + y we can first write it as +(x, y) and then
replace the addition symbol + by any two argument function
symbol g ∈ F and get the term g(x, y).

Set F of Formulas

Formulas are build out of elements of the alphabet A and
the set T of all terms.

We denote the formulas by A ,B ,C ,, with indices, if
necessary.

We build them, as before in recursive steps.

The first recursive step says:

all atomic formulas are formulas.

The atomic formulas are the simplest formulas, as the
propositional variables were in the case of the propositional
language.

We define the atomic formulas as follows.

Atomic Formulas

Definition

An atomic formula is any expression of the form

R(t1, t2, ..., tn),

where R is any n-argument predicate R ∈ P and t1, t2, ..., tn
are terms, i.e. t1, t2, ..., tn ∈ T.

Some atomic formulas of L are:

Q(c), Q(x), Q(g(x1, x2)),

R(c, d), R(x, f(c)), R(g(x, y), f(g(c, z))),

Set F of Formulas

Definition

The set F of formulas of predicate language L is the
smallest set meeting the following conditions.

1. All atomic formulas are formulas;

2. If A ,B are formulas, then
¬A , (A ∩ B), (A ∪ B), (A ⇒ B), (A ⇔ B) are formulas;

3. If A is a formula, then ∀xA , ∃xA are formulas for any
variable x ∈ VAR.

Set F of Formulas

Example

Some formulas of L are:

R(c, d), ∃yR(y, f(c)), R(x, y),

(∀xR(x, f(c))⇒ ¬R(x, y)), (R(c, d) ∩ ∀zR(z, f(c))),

∀yR(y, g(c, g(x, f(c)))), ∀y¬∃xR(x, y)

Set F of Formulas

Let’s look now closer at the following formulas.

R(c1, c2), R(x, y), ((R(y, d)⇒ R(a, z)),

∃xR(x, y), ∀yR(x, y), ∃x∀yR(x, y).

Observations
1. Some formulas are without quantifiers:

R(c1, c2), R(x, y), (R(y, d)⇒ R(a, z)).

A formula without quantifiers is called an open formula

Variables x, y in R(x, y) are called free variables.

The variable y in R(y, d) and z in R(a,z) are also free.

Set F of Formulas

Observations

2. Quantifiers bind variables within formulas.

The variable x is bounded by ∃x in the formula ∃xR(x, y), the
variable y is free.

The variable y is bounded by ∀y in the formula ∀yR(x, y),
the variable y is free.

3. The formula ∃x∀yR(x, y) does not contain any free
variables, neither does the formula R(c1, c2).

4. A formula without any free variables is called a closed
formula or a sentence.

Mathematical Statements

We often use logic symbols, while writing mathematical
statements in a more symbolic way.
For example, mathematicians to say ”all natural numbers are
greater then zero and some integers are equal 1” often write

x ≥ 0, ∀x∈N and ∃y∈Z , y = 1.

Some of them who are more ”logic oriented” would write it as

∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1,

or even as
∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1.

Observe that none of the above symbolic statement are
formulas of the predicate language.
These are mathematical statements written with mathematical
and logic symbols. They are written with different degree of
”logical precision”, the last being, from a logician point of view
the most precise.

Mathematical Statements

Our goal now is to ”translate ” mathematical and natural
language statement into correct formulas of the predicate
language L.

Let’s start with some observations.

O1 The quantifiers in ∀x∈N , ∃y∈Z are not the one used in
logic.

O2 The predicate language L admits only quantifiers
∀x, ∃y, for any variables x, y ∈ VAR.

O3 The quantifiers ∀x∈N , ∃y∈Z are called quantifiers with
restricted domain.

The restriction of the quantifier domain can, and often is
given by more complicated statements.

Quantifiers with Restricted Domain

The quantifiers ∀A(x) and ∃A(x) are called quantifiers with
restricted domain, or restricted quantifiers, where A(x) ∈ F is
any formula with a free variable x ∈ VAR.

Definition

∀A(x)B(x) stands for a formula ∀x(A(x)⇒ B(x)) ∈ F .

∃A(x)B(x) stands for a formula ∃x(A(x) ∩ B(x)) ∈ F .

We write it as the following transformations rules for
restricted quantifiers

∀A(x) B(x) ≡ ∀x(A(x)⇒ B(x))

∃A(x) B(x) ≡ ∃x(A(x) ∩ B(x))

Translations to Formulas of L

Given a mathematical statement S written with logical
symbols.

We obtain a formula A ∈ F that is a translation of S into L by
conducting a following sequence of steps.

Step 1 We identify basic statements in S, i.e. mathematical
statements that involve only relations. They are to be
translated into atomic formulas.

We identify the relations in the basic statements and choose
the predicate symbols as their names.

We identify all functions and constants (if any) in the basic
statements and choose the function symbols and constant
symbols as their names.

Step 2 We write the basic statements as atomic formulas
of L.

Translations to Formulas of L

Remember that in the predicate language L we write a
function symbol in front of the function arguments not
between them as we write in mathematics.

The same applies to relation symbols.

For example we re-write a basic mathematical statement
x + 2 > y as > (+(x, 2), y), and then we write it as an atomic
formula P(f(x, c), y)

P ∈ P stands for two argument relation >,

f ∈ F stands for two argument function +, and c ∈ C stands
for the number 2.

Translations to Formulas of L

Step 3 We write the statement S a formula with restricted
quantifiers (if needed).

Step 4. We apply the transformations rules for restricted
quantifiers to the formula from Step 3 and obtain a proper
formula A of L as a result, i.e. as a transtlation of the given
mathematical statement S.

In case of a translation from mathematical statement written
without logical symbols we add a following step.

Step 0 We identify propositional connectives and quantifiers
and use them to re-write the statement in a form that is as
close to the structure of a logical formula as possible.

Translations Examples

Exercise

Given a mathematical statement S written with logical
symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

1. Translate it into a proper logical formula with restricted
quantifiers i.e. into a formula of L that uses the restricted
domain quantifiers.

2. Translate your restricted quantifiers formula into a correct
formula without restricted domain quantifiers, i.e. into a
proper formula of L.

A long and detailed solution is given in Chapter 2, page 28.

A short statement of the exercise and a short solution follows.

Translations Examples

Exercise
Given a mathematical statement S written with logical symbols

(∀x∈N x ≥ 0 ∩ ∃y∈Z y = 1)

Translate it into a proper formula of L.
Short Solution
The basic statements in S are: x ∈ N, x ≥ 0, y ∈ Z , y = 1.
The corresponding atomic formulas of L are:
N(x), G(x, c1), Z(y), E(y, c2), for
n ∈ N, x ≥ 0, y ∈ Z , y = 1, respectively.
The statement S becomes restricted quantifiers formula

(∀N(x)G(x, c1) ∩ ∃Z(y) E(y, c2))

By the transformation rules we get A ∈ F :

(∀x(N(x)⇒ G(x, c1)) ∩ ∃y(Z(y) ∩ E(y, c2)))

This is how you can write your solutions on Quizzes and Tests

Translations Examples

Exercise

Here is a mathematical statement S:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

1. Re-write S as a symbolic mathematical statement SF that
only uses mathematical and ogical symbols.

2. Translate the symbolic statement SF into to a
corresponding formula A ∈ F of the predicate language L

Translations Examples

Solution

The statement S is:

”For all real numbers x the following holds: If x < 0, then
there is a natural number n, such that x + n < 0.”

S becomes a symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

We write R(x) for x ∈ R, N(y) for n ∈ N, a constant c for the
number 0. We use L ∈ P to denote the relation <. We use
f ∈ F to denote the function +.

The statement x < 0 becomes an atomic formula L(x, c).
The statement x + n < 0 becomes L(f(x,y), c).

Translations Examples

Solution c.d.

The symbolic mathematical statement SF

∀x∈R(x < 0⇒ ∃n∈N x + n < 0)

becomes a restricted quantifiers formula

∀R(x)(L(x, c)⇒ ∃N(y)L(f(x, y), c))

We apply now the transformation rules and get a
corresponding formula A ∈ F :

∀x(N(x)⇒ (L(x, c)⇒ ∃y(N(y) ∩ L(f(x, y), c)))

Translations from Natural Language

Exercise

Translate a natural language statement

S: ”Any friend of Mary is a friend of John and Peter is not
John’s friend. Hence Peter is not May’s friend.”

into a formula A ∈ F of the predicate language L.

Solution
1. We identify the basic relations and functions (if any) and
translate them into atomic formulas.

We have only one relation of ”being a friend”.

We translate it into an atomic formula F(x, y),

where F(x, y) stands for ”x is a friend of y”.

Translations from Natural Language

S: ”Any friend of Mary is a friend of John and Peter is not
John’s friend. Hence Peter is not May’s friend.”

We use constants m, j, p for Mary, John, and Peter,
respectively.

We hence have the following atomic formulas:

F(x, m), F(x, j), F(p, j), where

F(x, m) stands for ”x is a friend of Mary”,

F(x, j) stands for ”x is a friend of John”, and

F(p, j) stands for ”Peter is a friend of John”.

Translations from Natural Language

2. Statement ”Any friend of Mary is a friend of John”
translates into a restricted quantifier formula ∀F(x,m) F(x, j).

”Peter is not John’s friend” translates into ¬F(p, j), and

”Peter is not May’s friend” translates into ¬F(p,m).
3. Restricted quantifiers formula for S is

((∀F(x,m)F(x, j) ∩ ¬F(p, j))⇒ ¬F(p,m))

and the formula A ∈ F of L is

((∀x(F(x,m)⇒ F(x, j)) ∩ ¬F(p, j))⇒ ¬F(p,m)).

Rules of Translations

Rules of translation from natural language to the predicate
language L

1. Identify the basic relations and functions (if any) and
translate them into atomic formulas.

2. Identify propositional connectives and use symbols
¬,∪,∩,⇒,⇔ for them.

3. Identify quantifiers: restricted ∀A(x), ∃A(x), and
non-restricted ∀x, ∃x.

4. Use the symbols from 1. - 3. and restricted quantifiers
transformation rules to write A ∈ F of the predicate
language L.

Translation Example

Exercise

Given a natural language statement

S: ”For any bird one can find some birds that white.”

Show that the translation of S into a formula of the predicate
language L is ∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Solution

We follow the rules of translation to verify the correctness of
the translation.

1. Atomic formulas: B(x), W(x).

B(x) stands for ” x is a bird” and W(x) stands for ” x is
white”.

2. There is no propositional connectives in S.

Translation Example

3. Restricted quantifiers:

∀B(x) for ”any bird ” and

∃B(x) for ”one can find some birds”.

Restricted quantifiers formula for S is

∀B(x)∃B(x) W(x)

4. By the transformation rules we get a required formula of
the predicate language L:

∀x(B(x)⇒ ∃x(B(x) ∩W(x)))

Translation Example

Exercise

Translate into L a natural language statement
S: ” Some patients like all doctors.”

Solution

1. Atomic formulas: P(x), D(x), L(x, y).

P(x) stands for ” x is a patient”,

D(x) stands for ” x is a doctor”, and

L(x,y) stands for ” x likes y”.

2. There is no propositional connectives in S.

Translation Example

3. Restricted quantifiers:

∃P(x) for ”some patients ” and ∀D(x) for ”all doctors”.

Observe that we can’t write L(x, D(y)) for ”x likes doctor y”.

D(y) is a predicate, not a term, and hence L(x, D(y)) is not a
formula.

We have to express the statement ” x likes all doctors y” in
terms of restricted quantifiers and the predicate L(x,y) only.

Translation Example

Observe that the statement ” x likes all doctors y” means
also ” all doctors y are liked by x”.

We can re- write it as ”for all doctors y, x likes y” what
translates to a formula ∀D(y)L(x, y).

Hence the statement S translates to

∃P(x)∀D(x)L(x, y).

4. By the transformation rules we get the following translation
of S into L.

∃x(P(x) ∩ ∀y(D(y)⇒ L(x, y))).

Translation in Artificial Intelligence

In AI we usually deal with what is called an intended
interpretation

It means we use logic symbols to describe, similarly as we do
in mathematics, a concrete, specific universes with specific
relations, functions or constants

In logic we use general symbols without any meaning

Logic is created to describe statements (formulas) and
methods of reasoning that are universally applicable
(tautologically true) and hence independent of any particular
domain

Translation in Artificial Intelligence

In AI we use intended names for relations, functions and
constants

The symbolic language we use is still a symbolic language,
even if the intended names are used.

In the AI we write, for example

Like(John, Mary)

instead of a formula L(c1, c2) in logic.

We write
greater(x, y) or > (x, y)

instead of R(x, y) in logic.

Example

AI formulas corresponding to a statement

S: ”For every student there is a student that is an elephant”

are as follows.

Restricted quantifiers AI formula:

∀Student(x)∃Student(x) Elephant(x)

Non-restricted quantifiers AI formula:

∀x(Student(x)⇒ ∃x(Student(x) ∩ Elephant(x)))

Translation in Artificial Intelligence

Observe that a proper formulas of the LOGIC language
corresponding the statement

”For every student there is a student that is an elephant” are
the same as the formulas corresponding to the natural
language statement

For any bird one can find some birds that white”, namely

Restricted quantifiers logic formula:

∀P(x)∃P(x) R(x)

Non-restricted quantifiers logic formula:

∀x(P(x)⇒ ∃x(P(x) ∩ Rx)))

Translation in Artificial Intelligence

Statement ”Any friend of Mary is a friend of John” translates
in AI as follows.

Restricted quantifier AI formula:

((∀Friend(x,Mary) Friend(x, John) ∩ ¬Friend(Peter , John))

(⇒ ¬Friend(Peter ,Mary))

Non-restricted AI formula:

((∀x(Friend(x,Mary)⇒ Friend(x, John)) ∩ ¬Friend(Peter , John))

⇒ ¬Friend(Peter ,Mary))

