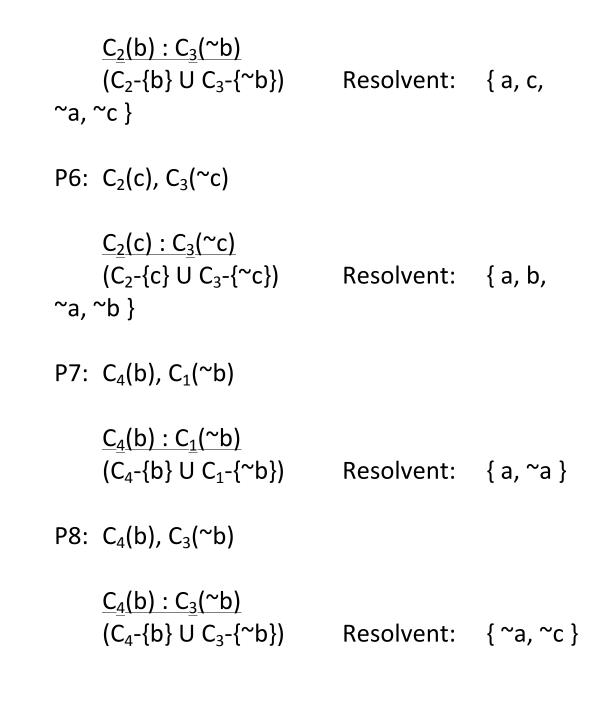
CSE 352 – Artificial Intelligence


RESOLUTION HOMEWORK SOLUTION

1)	A)	C ₂ = C ₃ = C ₄ =	= { a, ~b } = { a, b, c } = { ~a, c } = { ~c, ~b } = { C ₁ , C ₂ , C ₃ , C ₄ }		
	P1: C ₁ (a), C ₃ (~a)				
			<u>C₁(a) : C₃(~a)</u> (C ₁ -{a} U C ₃ -{~a})	Resolvent:	{ ~b, c }
		P2:	C ₂ (a), C ₃ (~a)		
			<u>C₂(a) : C₃(~a)</u> (C ₂ -{a} U C ₃ -{~a})	Resolvent:	{ b, c }
		P3:	C ₂ (b), C ₁ (~b)		
			$\frac{C_2(b) : C_1(\sim b)}{(C_2-\{b\} \cup C_1-\{\sim b\})}$	Resolvent:	{ a, c }

P4:
$$C_2(b), C_4(\sim b)$$

 $C_2(b): C_4(\sim b)$
 $(C_2-\{b\} \cup C_4-\{\sim b\})$ Resolvent: { a, c, $\sim c$
}
P5: $C_2(c), C_4(\sim c)$
 $C_2(c): C_4(\sim c)$
 $(C_2-\{c\} \cup C_4-\{\sim c\})$ Resolvent: { a, b, $\sim b$
}
P6: $C_3(c), C_4(\sim c)$
 $C_3(c): C_4(\sim c)$
 $(C_3-\{c\} \cup C_4-\{\sim c\})$ Resolvent: { $\sim a, \sim b$ }

B)
$$C_1 = \{a, \ a, \ b \}$$

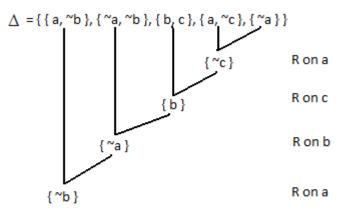
 $C_2 = \{a, b, c \}$
 $C_3 = \{a, b, c \}$
 $C_4 = \{a, b, c \}$
 $C_4 = \{b \}$
 $\Delta = \{C_1, C_2, C_3, C_4 \}$

P1:
$$C_1(a), C_3(~a)$$

 $C_1(a): C_3(~a)$
 $(C_1-\{a\} \cup C_3-\{~a\})$ Resolvent: {~a, ~b,
~c }
P2: $C_2(a), C_1(~a)$
 $C_2(a): C_1(~a)$
 $(C_2-\{a\} \cup C_1-\{~a\})$ Resolvent: { b, c, a,
~b }
P3: $C_2(a), C_3(~a)$
 $C_2(a): C_3(~a)$
 $C_2(a): C_3(~a)$
 $C_2(a): C_3(~a)$
 $C_2(a): C_3(~a)$
 $C_2(b), C_1(~b)$
 $C_2(b): C_1(~b)$
 $C_2(b): C_1(~b)$
 $C_2(b): C_1(~b)$
Resolvent: { a, c, ~a
}
P5: $C_2(b), C_3(~b)$

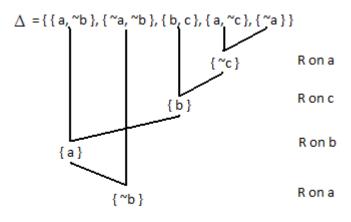
$$C_{3} = \{ b, c \}$$

$$C_{4} = \{ a, \sim c \}$$

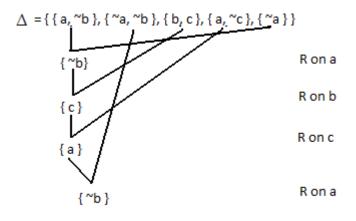

$$C_{5} = \{ \sim a \}$$

$$\Delta = \{ C_{1}, C_{2}, C_{3}, C_{4}, C_{5} \}$$

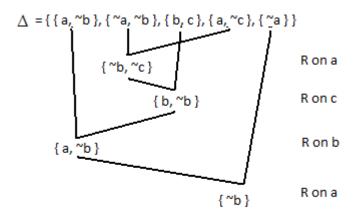
Pure literals: none Tautologies: none


Resolution Deduction

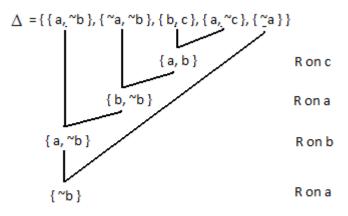
Derivation 1:


∆ |-_R {~b}

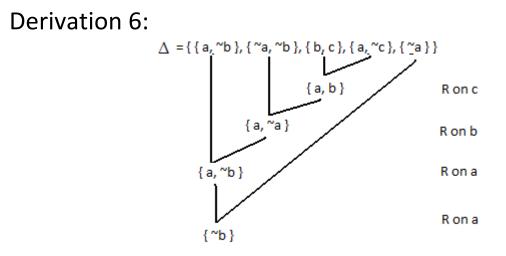
Derivation 2:


∆ |-_R {~b}

Derivation 3:

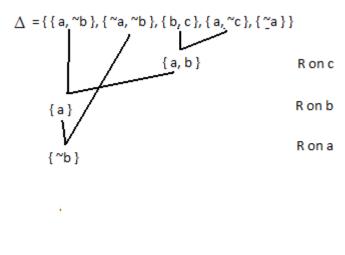

∆ |-_R {~b}

Derivation 4:

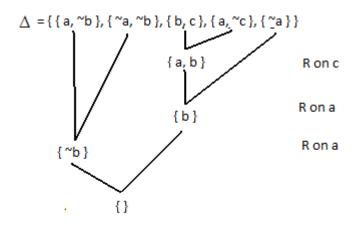


∆ |-_R {~b}

Derivation 5:



∆ |-_R {~b}


∆ |-_R {~b}

Derivation 7:

∆ |-_R {~b}

Derivation 8:

 $\Delta \mid -_{R} \{\}$

△ is UNSATISFIABLE!

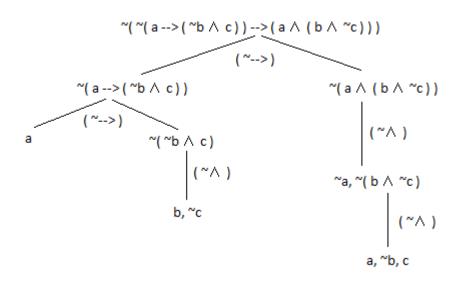
B)
$$C_1 = \{a, \ b \}$$

 $C_2 = \{\ a, \ b \}$
 $C_3 = \{b, c\}$
 $C_4 = \{a, \ c\}$
 $\Delta = \{C_1, C_2, C_3, C_4\}$

Pure literals: none Tautologies: none

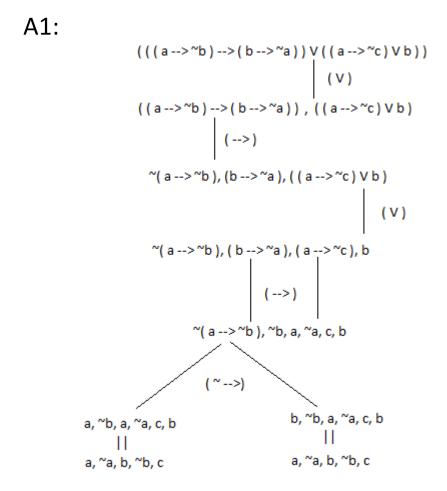
OBSERVE that after working on Part A of this problem, in order to resolve △ to { }, we will need to have a pair of complimentary clauses to

eliminate a literal from it. This would allow us to resolve the single literal clause with the single literal clause already given. In this part, there is no clause with a single literal. Therefore, we will need to find two pairs of complimentary clauses that resolve to complimentary and single literal clauses. The only complimentary clauses given are C_1 and C_2 . Because of this, Δ is SATISFIABLE!


C)
$$C_1 = \{a, b\}$$

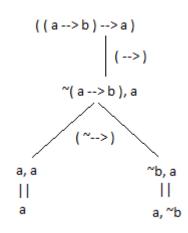
 $C_2 = \{ a, b \}$
 $C_3 = \{b, c\}$
 $C_4 = \{a, c\}$
 $\Delta = \{C_1, C_2, C_3, C_4 \}$

Pure literals: b, \sim c $\Delta' = \{ \}$


Since literals b and ~c have only one polarity in all the clauses, we can delete all clauses that contain either of them. This results in the empty set { }. △ is UNSATISFIABLE! 3)

A1) (((
$$a \rightarrow ~b$$
) \rightarrow ($b \rightarrow ~a$)) V(($a \rightarrow ~c$) V b))
A2) (($a \rightarrow b$) $\rightarrow a$)
B) ($~(a \rightarrow (~b \land c)$) \rightarrow ($a \land (b \land ~c$)))

~B:



$$\Delta_{\sim_{B}} = \{ \{a\}, \{b, \sim c\}, \{a, \sim b, c\} \}$$

 $\Delta_{A1} = \{ \{a, \ a, b, \ b, c\} \}$

$$\Delta_{A2} = \{ \{a\}, \{a, \sim b\} \}$$

 $\Delta = \Delta_{A1} \vee \Delta_{A2} \vee \Delta_{\sim B} = \{ \{a\}, \{b, \sim c\}, \{a, \sim b, c\}, \{a, \sim a, b, \sim b, c\}, \{a, \sim b\} \}$

Tautologies: {a, ~a, b, ~b, c}

 $\Delta' = \{ \{a\}, \{b, \sim c\}, \{a, \sim b, c\}, \{a, \sim b\} \}$

Pure literals: a

 $\Delta'' = \{ \{ b, \ \ c \} \}$

Resolution Deduction: Cannot resolve any further.

Argument is NOT VALID!