CSE352 AI

HOMEWORK 2 - 10pts

Homework 2 has 3 Problems in 2 PARTS and an extra credit problem.

SOLVE ONLY TWO problems of your choice

I will post Solutions so you could compare your solutions with mine. PROBLEMS similar to Hmks will appear on your TEST

You must **TYPE the statement of each problem** you are solving; otherwise problem will not be considered for correction.

You can DRAW your TREES by hand.

Here are some **DEFINITIONS** from the **Lecture Notes** that YOU NEED for your Homework

Definition 1

Given a classification dataset DB with a set $A = \{a_1, a_2, ..., a_n\}$ of attributes and a **class attribute** C with values $\{c_1, c_2, ..., c_k\}$ (k classes), any expression $a_1 = v_1 \Lambda ... \Lambda a_k = v_k$, where $a_i \in A$ and v_i are values of attributes is called a **DESCRIPTION**.

In particular, $C = c_k$ is called a CLASS DESCRIPTION.

Definition 2

A CHARACTERISTIC FORMULA is any expression

 $C = c_k \Longrightarrow a_1 = v_1 \Lambda \dots \Lambda a_k = v_k,$ We write it shortly as

$CLASS \Rightarrow DESCRIPTION$

Definition 3

A **DISCRIMINANT formula** is any expression $a_1 = v_1 \land \dots \land a_k = v_k \Longrightarrow C = c_k$ written shortly as **DESCIPTION \Rightarrow CLASS**

Definition 4

A characteristic formula $CLASS \Rightarrow DESCRIPTION$ is called a CHARACTERISITIC RULE of the classification dataset DB iff it is TRUE in DB, i.e. when the following holds

{o: **DESCRIPTION**} \cap {o: **CLASS**} not= \emptyset

where {**o: DESCRIPTION**} is the set of all records of DB corresponding to the description **DESCRIPTION** and {**o: CLASS**} is the set of all records of DB corresponding to the description CLASS

Definition 5

A discriminant formula DESCRIPTION \Rightarrow CLASS is called a **DISCRIMINANT RULE** of DB iff it is **TRUE in DB**, i.e. the following two conditions hold

1. {o: **DESCRIPTION**} not= \emptyset

2. {o: DESCRIPTION} \subseteq {o: CLASS}

PART ONE: Classification: Characteristic and Discriminant Rules

Given a dataset:

Record	<i>a</i> ₁	a_2	<i>a</i> ₃	<i>a</i> ₄	C
01	1	1	1	0	1
02	2	1	2	0	2
03	0	0	0	0	0
04	0	0	2	1	0
05	2	1	1	0	1

C – class attribute

Problem 1

1. Find sets {o :DESCRIPTION} for the following descriptions

Follow the **Example** below when writing your solutions

Example: for description $a1 = 2 a \Lambda a_2 = 1$ you have evaluate the set:

{o: $a_1 = 2 \Lambda a_2 = 1$ } = { o_2, o_5 }

1)
$$a_3 = 1 \Lambda a_4 = 0$$

2) $a_2 = 0 \Lambda a_3 = 2$

3) C=1

4) C=0

2. For the following formulas use proper definitions stated above to determine, it means use proper definitions to prove whether they are or they are not DISCRIMINANT / CHARACTERISTIC RULES of our dataset.

Example:

 $a_1 = 2 \text{ a } \Lambda a_2 = 1 \implies C = 1$ is a DISCRIMANT Formula that is **NOT** DISCRIMINANT RULE because $\{o: a_1 = 2 \Lambda a_2 = 1\} = \{o_2, o_5\}, \{o: C=1\} = \{o_1, o_5\}$ and $\{o_2, o_5\}$ is **NOT a subset** of $\{o_1, o_5\}$

5)
$$a_1 = 1 \wedge a_2 = 1 \Rightarrow C = 1$$

6) $C = 1 \Rightarrow a_1 = 0 \wedge a_2 = 1 \wedge a_3 = 1$
7) $C = 2 \Rightarrow a_1 = 1$
8) $C = 0 \Rightarrow a_1 = 1 \wedge a_4 = 0$
9) $a_1 = 2 \wedge a_2 = 1 \wedge a_3 = 1 \Rightarrow C = 0$

10) $a_1 = 0 \Lambda a_3 = 2 \Longrightarrow C = 1$

PART TWO:

Decision Tree Learning 1

Here is the **TRAINING DATA** SET FOR THE HOMEWORK: Class Attribute: **Buys Computer**

Age	Income	Student	Credit	Buys
			Rating	Computer
<=30	high	No	Fair	No
<=30	high	No	Excellent	No
3140	high	No	Fair	Yes
>40	medium	No	Fair	Yes
>40	Low	Yes	Fair	Yes
>40	low	Yes	Excellent	No
3140	low	Yes	Excellent	Yes
<=30	medium	No	Fair	No
<=30	low	Yes	Fair	Yes
>40	medium	Yes	Fair	Yes
<=30	medium	Yes	Excellent	Yes
3140	medium	No	Excellent	Yes
3140	high	Yes	Fair	Yes
>40	medium	No	Excellent	No

When building your DECISION TREES follow Examples in the Lectures; you must include ALL steps of their constructions not only the final results.

Problem 2

Use the Training Data to create **two decision trees** described as follows

Tree1 : Build the decision tree using **general majority voting heuristic**, defined as follows:

You CAN use MAJORITY Vote for the majority class at anytable at any level of the tree – when you choose so.

Use **CREDIT RATING** as the **root attribute**, and nodes attributes of your own choice;

YOU MUST use at least 3 attributes as nodes.

- 2. Write down all the **rules determined by your tree** in the **description** and in the **predicate forms**
- **3. EVALUATE predictive accuracy** for the set of your rules with respect to the **TEST Dataset** below

Tree 2: Use Basic ID3 algorithm

Use INCOME as root attribute, and nodes attributes of your choice;

- 2. Write down all the **rules determined by your tree** in the **description** and **predicate forms**
- **3. Evaluate correctness of your rules, i.e. the predictive accuracy with respect to the TRAINING data**
- 4. Evaluate predictive accuracy for the set of your rules with respect to the TEST Dataset below.
 Must show work.

TEST DATA SET

Obj	Age	Income	Student	Credit_Rating	Class
1	<=30	High	Yes	Fair	Yes
2	3140	Low	No	Fair	Yes

3	3140	High	Yes	Excellent	No
4	>40	Low	Yes	Fair	Yes
5	>40	Low	Yes	Excellent	No
6	<=30	Low	No	Fair	No

Problem 3

Create test data set of at least 6 records for your sets of rules rules corresponding to Tree 1 or Tree 2 that guarantees 100% predictive accuracy. Prove that your example is correct.

Extra Credit - 5pts

EVALUATE Information Gain for 2 attributes on one NODE of your choice of your tree **Tree 1 or 2**

You must show work, not a final number; in fact you can write proper formulas for its computation without evaluating (calculator) the numbers.

I want to SEE if you understand the formulas