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What are Genetic Algorithms?

Evolutionary Search optimization algorithms
Techniques inspired by Biology, such as:
Evolution (Fitness, Selection)

Mutation (Crossover, etc)

Can search large spaces somewhat intelligently and quickly
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When can we use them?

Large complex search space
Many levels of correctness for a potential solution
We can encode a solution with a small amount of data

We can quickly and precisely, tell how good a potential solution
1S.
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General Technique

Encode the problem, and select an initial population

Select the most fit of each generation, create an offspring
population

Replace unselected solutions with the new offspring to obtain a
new population.

Repeat until:
There is a suitably-fit solution

A certain number of generations or computational time
elapse

Successive repetitions reach a plateau and no better solutions
are found



Implementing

Define the problem, and decide how to encode a potential
solution

Write a fitness function, to determine the degree of "correctness'
for any solution

Define how we select the most fit solutions:

Usually top X% percent, but there are other strategies
Determine how to breed individual solutions:

Crossover: selecting large sections of a solution from one

parent, and others from another

Mutation: randomly changing the elements of the children,
with some probability, to avoid local optima

Select a termination condition



This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example - Binary Numbers
Why should we use them?

Why shouldn't we use them?

Related techniques



Example - Binary Numbers

Problem: Which bitstring encodes a specific number in binary?

Each solution (genotype) is a string of bits

Our fitness function converts the bitstring into decimal, and
subtracts it from the goal

We stop when we have found the bitstring, i.e., difference is 0.

| used a library called Charlie, written by Sander Land
http://charlie.rubyforge.org



Code Example

We find a random number,
: and how big it might be.
- } We define the genotype
- (number - N).abs
L The fitness function

def number
bitstring.to_i(2) }\ Convert it to a number

end

def bitstring
genes.map(&:to s).join
end

def To_ s
"#{bitstring} (#{number.to s})”
end




Benchmarking

We can also specify multiple strategies to test, and compare with mutation,
crossover, and selection strategies are best for our problem.

.benchmark( '‘output.html ') do
selection \

crossover \

3

(8. :cube),
(@. :cube),
(@. :cube),
(8. :1line),
(@. :1line),
(@. :1line)

mutator \
(:expected n[1], :flip),
(:expected n[5], :flip),
(:expected n[15], :flip)

repeat 20
generations 166
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Why should we use GAs?

Sometimes, depending on the problem, they can find a solution
very fast in a large problem space.

Implementing a GA is not too difficult.

Your other option is exhaustive search.
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Why shouldn’t we use GAs?

Writing a good fitness function for your problem may be hard.

The fitness “landscape” may cause a population to converge on
a local optima, and thus miss a global optimum.

If your problem can only tell you if a solution is either right or
wrong, GAs cannot search effectively.

(However, if the test can be repeated with varying results, a ratio of
right to wrong can be used.)

Computationally expensive, although easily parallelizable.
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Related Techniques

Simulated Annealing

Useful when the search space is discrete
Can, to a degree, avoid local optima
Genetic Programming

Use a GA to evolve a program to solve instances of your
problem efficiently

Memetic Algorithms

New technique, individuals undergo self-improvement in
each generation.



Swarm Intelligence

Ant-colony Optimization
Individuals leave "pheromones” to direct later iterations in
the proper direction.

Bees Algorithm

Mimics honey-bee foraging behavior, teaches other
individuals where "food" (optima/ridge) is.
Particle Swarm Optimization
Each individual is given a velocity, heading is adjusted
towards particles that have performed better
Often are able to adapt to a changing problem space, and can
thus run continually.

Applications in network routing, urban traffic routing, etc.
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