

Genetic Algorithms

An Introduction

Benjamin Kudria
CSE 352

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

What are Genetic Algorithms?
●

● Evolutionary Search optimization algorithms
●

● Techniques inspired by Biology, such as:
– Evolution (Fitness, Selection)
– Mutation (Crossover, etc)
–

● Can search large spaces somewhat intelligently and quickly

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

When can we use them?
●

● Large complex search space
●

● Many levels of correctness for a potential solution
●

● We can encode a solution with a small amount of data
●

● We can quickly and precisely, tell how good a potential solution
is.

●

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

General Technique
● Encode the problem, and select an initial population
● Select the most fit of each generation, create an offspring

population
● Replace unselected solutions with the new offspring to obtain a

new population.
● Repeat until:

– There is a suitably-fit solution
– A certain number of generations or computational time

elapse
– Successive repetitions reach a plateau and no better solutions

are found

Implementing
● Define the problem, and decide how to encode a potential

solution
● Write a fitness function, to determine the degree of "correctness"

for any solution
● Define how we select the most fit solutions:

– Usually top X% percent, but there are other strategies
● Determine how to breed individual solutions:

– Crossover: selecting large sections of a solution from one
parent, and others from another

– Mutation: randomly changing the elements of the children,
with some probability, to avoid local optima

● Select a termination condition

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

Example – Binary Numbers
● Problem: Which bitstring encodes a specific number in binary?
● Each solution (genotype) is a string of bits
● Our fitness function converts the bitstring into decimal, and

subtracts it from the goal
● We stop when we have found the bitstring, i.e., difference is 0.
● I used a library called Charlie, written by Sander Land

– http://charlie.rubyforge.org
http://charlie.rubyforge.org/

Code Example
● We find a random number,

and how big it might be.

● We define the genotype

● The fitness function

● Convert it to a number

Benchmarking
● We can also specify multiple strategies to test, and compare with mutation,

crossover, and selection strategies are best for our problem.

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

Why should we use GAs?
●

● Sometimes, depending on the problem, they can find a solution
very fast in a large problem space.

●

● Implementing a GA is not too difficult.
●

● Your other option is exhaustive search.

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

Why shouldn't we use GAs?
●

● Writing a good fitness function for your problem may be hard.
● The fitness “landscape” may cause a population to converge on

a local optima, and thus miss a global optimum.
● If your problem can only tell you if a solution is either right or

wrong, GAs cannot search effectively.
– (However, if the test can be repeated with varying results, a ratio of

right to wrong can be used.)
● Computationally expensive, although easily parallelizable.

This Presentation

● What are Genetic Algorithms?
● When can we use them?
● How do they work?
● An Example – Binary Numbers
● Why should we use them?
● Why shouldn't we use them?
● Related techniques
●

Related Techniques
● Simulated Annealing

– Useful when the search space is discrete
– Can, to a degree, avoid local optima

● Genetic Programming
– Use a GA to evolve a program to solve instances of your

problem efficiently
● Memetic Algorithms

– New technique, individuals undergo self-improvement in
each generation.

Swarm Intelligence
● Ant-colony Optimization

– Individuals leave "pheromones" to direct later iterations in
the proper direction.

● Bees Algorithm
– Mimics honey-bee foraging behavior, teaches other

individuals where "food" (optima/ridge) is.
● Particle Swarm Optimization

– Each individual is given a velocity, heading is adjusted
towards particles that have performed better

● Often are able to adapt to a changing problem space, and can
thus run continually.

● Applications in network routing, urban traffic routing, etc.

Sources
● Fraser, Alex (1957). "Simulation of genetic systems by automatic digital computers. I.

Introduction". Aust. J. Biol. Sci. 10: 484–491.
● Fraser, Alex; Donald Burnell (1970). Computer Models in Genetics. New York: McGraw-Hill.
● Crosby, Jack L. (1973). Computer Simulation in Genetics. London: John Wiley & Sons.
● Fogel, David B. (editor) (1998). Evolutionary Computation: The Fossil Record. New York: IEEE Press.
● Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press
● V. Cerny, A thermodynamical approach to the travelling salesman problem: an efficient simulation

algorithm. Journal of Optimization Theory and Applications, 45:41-51, 1985
● M. Dorigo, 1992. Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di

Milano, Italy.
● J. Kennedy, and R. Eberhart, Particle swarm optimization, in Proc. of the IEEE Int. Conf. on Neural

Networks, Piscataway, NJ, pp. 1942–1948, 1995.
● Land, Sander, 2008, Charlie – A Genetic Algorithms Library For Ruby,

http://charlie.rubyforge.org

●

●

