Genetic Algorithms

An Introduction

Benjamin Kudria
CSE 352

This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example — Binary Numbers
Why should we use them?
Why shouldn't we use them?

Related techniques

This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example — Binary Numbers
Why should we use them?

Why shouldn't we use them?

Related techniques

What are Genetic Algorithms?

Evolutionary Search optimization algorithms
Techniques inspired by Biology, such as:
Evolution (Fitness, Selection)

Mutation (Crossover, etc)

Can search large spaces somewhat intelligently and quickly

This Presentation

What are Genetic Algorithms?
When can we use them?
How do they work?

An Example — Binary Numbers
Why should we use them?
Why shouldn't we use them?

Related techniques

When can we use them?

Large complex search space
Many levels of correctness for a potential solution
We can encode a solution with a small amount of data

We can quickly and precisely, tell how good a potential solution
1S.

This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example — Binary Numbers
Why should we use them?
Why shouldn't we use them?

Related techniques

General Technique

Encode the problem, and select an initial population

Select the most fit of each generation, create an offspring
population

Replace unselected solutions with the new offspring to obtain a
new population.

Repeat until:
There is a suitably-fit solution

A certain number of generations or computational time
elapse

Successive repetitions reach a plateau and no better solutions
are found

Implementing

Define the problem, and decide how to encode a potential
solution

Write a fitness function, to determine the degree of "correctness'
for any solution

Define how we select the most fit solutions:

Usually top X% percent, but there are other strategies
Determine how to breed individual solutions:

Crossover: selecting large sections of a solution from one

parent, and others from another

Mutation: randomly changing the elements of the children,
with some probability, to avoid local optima

Select a termination condition

This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example - Binary Numbers
Why should we use them?

Why shouldn't we use them?

Related techniques

Example - Binary Numbers

Problem: Which bitstring encodes a specific number in binary?

Each solution (genotype) is a string of bits

Our fitness function converts the bitstring into decimal, and
subtracts it from the goal

We stop when we have found the bitstring, i.e., difference is 0.

| used a library called Charlie, written by Sander Land
http://charlie.rubyforge.org

Code Example

We find a random number,
: and how big it might be.
- } We define the genotype
- (number - N).abs
L The fitness function

def number
bitstring.to_i(2) }\ Convert it to a number

end

def bitstring
genes.map(&:to s).join
end

def To_ s
"#{bitstring} (#{number.to s})”
end

Benchmarking

We can also specify multiple strategies to test, and compare with mutation,
crossover, and selection strategies are best for our problem.

.benchmark('‘output.html ') do
selection \

crossover \

3

(8. :cube),
(@. :cube),
(@. :cube),
(8. :1line),
(@. :1line),
(@. :1line)

mutator \
(:expected n[1], :flip),
(:expected n[5], :flip),
(:expected n[15], :flip)

repeat 20
generations 166

This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example — Binary Numbers
Why should we use them?
Why shouldn't we use them?

Related techniques

Why should we use GAs?

Sometimes, depending on the problem, they can find a solution
very fast in a large problem space.

Implementing a GA is not too difficult.

Your other option is exhaustive search.

This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example — Binary Numbers
Why should we use them?
Why shouldn't we use them?

Related techniques

Why shouldn’t we use GAs?

Writing a good fitness function for your problem may be hard.

The fitness “landscape” may cause a population to converge on
a local optima, and thus miss a global optimum.

If your problem can only tell you if a solution is either right or
wrong, GAs cannot search effectively.

(However, if the test can be repeated with varying results, a ratio of
right to wrong can be used.)

Computationally expensive, although easily parallelizable.

This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?

An Example — Binary Numbers
Why should we use them?
Why shouldn't we use them?

Related techniques

Related Techniques

Simulated Annealing

Useful when the search space is discrete
Can, to a degree, avoid local optima
Genetic Programming

Use a GA to evolve a program to solve instances of your
problem efficiently

Memetic Algorithms

New technique, individuals undergo self-improvement in
each generation.

Swarm Intelligence

Ant-colony Optimization
Individuals leave "pheromones” to direct later iterations in
the proper direction.

Bees Algorithm

Mimics honey-bee foraging behavior, teaches other
individuals where "food" (optima/ridge) is.
Particle Swarm Optimization
Each individual is given a velocity, heading is adjusted
towards particles that have performed better
Often are able to adapt to a changing problem space, and can
thus run continually.

Applications in network routing, urban traffic routing, etc.

Sources

Fraser, Alex (1957). "Simulation of genetic systems by automatic digital computers. I.
Introduction”. Aust. J. Biol. Sci. 10: 484-491.

Fraser, Alex; Donald Burnell (1970). Computer Models in Genetics. New York: McGraw-Hill.
Crosby, Jack L. (1973). Computer Simulation in Genetics. London: John Wiley & Sons.
Fogel, David B. (editor) (1998). Evolutionary Computation: The Fossil Record. New York: IEEE Press.

Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press

V. Cerny, A thermodynamical approach to the travelling salesman problem: an efficient simulation
algorithm. Journal of Optimization Theory and Applications, 45:41-51, 1985

M. Dorigo, 1992. Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di
Milano, Italy.

J. Kennedy, and R. Eberhart, Particle swarm optimization, in Proc. of the IEEE Int. Conf. on Neural
Networks, Piscataway, NJ, pp. 1942-1948, 1995.

Land, Sander, 2008, Charlie — A Genetic Algorithms Library For Ruby,
http://charlie.rubyforge.org

