
Production Systems
Rule base Systems

(Busse book handout)

CSE 352
(Lecture Notes 4)

Professor Anita Wasilewska

Production Systems
(Rule Based Systems)

A production system consists of:
1.A knowledge base, also called a rule base

containing production rules, or productions.
2.A database, contains facts
3.A rule interpreter, also called a rule

application module to control the entire
production system.

Production Rules
(Expert System Rules)

Production rules are the units of knowledge of
the form:

IF conditions
THEN actions

Condition part of the rule is also called the
IF part, premise, antecedent or left side of the
rule.

Production Rules
(Expert System Rules)

Action part is also called THEN part, conclusion,
consequent, succeedent, or the right side of the
rule.

Actions are executed when conditions are true and
the rule is fired.

Rules Format:
C1 & C2 & … & Cn => A

C1, … , Cn, A are atomic formulas

Production Rule
(Expert System Rule)

1. Propositional logic conceptualization: rules
are propositional logic formulas i.e.

Rules are:
C1 & C2 & … & Cn => A

where C1, … , Cn, A are atomic formulas
In this case atomic formulas are propositional

variables or sometimes propositional
variables and their negations

All our book examples use propositional logic
conceptualization!

Production Rules
2. Predicate Form conceptualization

(knowledge representation)
Rules are:

C1 & C2 & … & Cn => A
where C1, … , Cn, A are atomic formulas

Atomic formulas now represent records in the
database and are written in a triple form:
(x, attribute, value of the attribute) , or
(ID, attribute, value of the attribute)

or in a predicate form
attribute (x, value of the attribute) ,
attribute (ID, value of the attribute)

Production System ES

ES = (R, RI, DBF)
R - is a finite set of production rules
RI – is an inference engine called rule interpreter
DBF – is a database of facts (changing dynamically)

Rules are always
C1 & … & Cn => A

For n> = 1 and
C1,…., Cn, A are atomic formulas in a Knowledge

Representation we work with

Propositional Rule of Inference in ES
Rules Interpreter RI

Rule of inference of the Rule Interpreter is:
C1 &C2 & … & Cn => A ; C1, …, Cn

A

for C1, … , Cn belonging to DBF
APPLICATION of the Rule of Inference means that
for a given rule of the production (expert) system ES

C1 & … & Cn -> A
the rule interpreter RI will check database of facts DBF and
if all C1,…,Cn belong to DBF, the interpreter will deduce A and

add A to the database of facts DBF.
We also say that the interpreter “Fire the rule” and add new

fact A to the database of facts.

Conceptualizations

In Predicate Form Conceptualization
Facts are certain atomic formulas
attribute (x, value of the attribute)
where the variable x is replaced (unified) with
record identifier ID

In Propositional conceptualizations
Facts are propositional atomic formulas i.e.

propositional variables or
(sometimes) negations of propositional variables

DBF – Database of Facts
The content of DBF (database of facts) is
changed cyclically by the rules interpreter RI

Facts may have time tags so that the time of
their insertion by RI in to DBF can be
determined

Example: (propositional)
DBF = {A, B} and our ES has a rule

A &B => C

The interpreter RI matches A &B with facts
A,B and fires rule and adds C to the DBF
and new get
NEW DBF = {A, B, C}

RI Rule Interpreter
RI works iteratively in recognize-and-act cycles
In a ONE CYCLE
1. RI matches the condition part of the rules against facts

(current state of DBF)
2. Recognizes all applicable rules
3. Selects one of them and applies it (fires, executes)
4. Adds the action part of the applied rule (fired rule) to

the current DBF.

RI stops when goal is reached (problem solved) or there
are no more applicable rules.

Predicate Form Conceptualization: Example
Records a1 a2 a3 a4 a5

O1 1 2 0 1 1

O2 0 0 1 a b

O3 0 1 2 1 a

Constants: (key attributes) o1, o2, o3
Values of a1 are: 1, 0, values of a2 are: 2, 0, 1
values of a3 are: 0, 1, 2, values of a4 are: 1, a, and values of a5 are:
1, a, b
TRIPLE PREDICATE FORM CONCEPTUALIZATION
Some Atomic Formulas that are NOT FACTS are:
(x , a1, 1), (x, a1, 0) , (x, a2, 2), (x, a5, a), where x is a variable!
Some Atomic Formulas that ARE FACTS in our data table are:
(O2, a2, 0), (O2, a3, 1), (O3, a5, a),
Rule example:
(x, a1, 0) & (x, a5, a) => (x, a3, 1)

Different Forms of Atomic Formulas
Atomic formula that is a FACT written in a triple form:

(o1, a1, 1)
The same formula written in predicate form is: a1 (o1, 1)
Atomic formula that is NOT a FACT written in a triple form is

(x , a3, 1)
The same formula written in predicate form is: a3 (x, 1)

In Busse Handout the form of atomic formulas is:
(Entity, Attribute, Value), (person, Attribute, Value),

where Entity represents a variable x, person represents a
constant (like John):

(x, Attribute, Value) , (John, Attribute, Value),
Where John is a constant and atomic formula becomes a FACT
We will use x to denote variables and we use the
predicate form: attribute(x, value)

Different Forms of Atomic Formulas

Atomic Formula that is a FACT written in a predicate form:

Valuehouse(John, 100,000)

Atomic Formula that is NOT a FACT written in a predicate form:

Valuehouse(x, 100,00)

x is a variable

In our Data Table: John is the key attribute

Name a1 Valuehouse

John yes 100,000

Two Forms of Atomic Formulas

1. Some atomic formulas from our database that are facts written
in Busse’s handout triple form are
(John, Eyes, Blue), (Mary, Children, 0)
(Mary, House, Small), (Anita, Eyes, Green)

2. Some atomic formulas that are not facts written in a predicate
form are Eyes(x, Blue), House(x, Small)

Observe that the above formulas become FACTS when x becomes
John or Mary. We say that we MATCH x in Eyes(x, Blue), with the

record John, or with the record Mary in House(x, Small)
We write it: Eyes(x, Blue){x/John) = Eyes(John, Blue),

House(x, Small){x/Mary} = House(Mary, Small)

ID Eyes Shoe
Size

Children House Salary

John Blue 10 2 Big 100,000

Mary Green 9 0 Small 5,000

Anita Green 9 1 Small 3,000

Rule Interpreter RI
The RI works iteratively in Recognize-And-Act

cycles. In such a cycle, RI:
1. Matches the condition part of the rules against

the facts and recognizes all applicable rules
2. Selects one of the applicable rules and applies

the rule i.e. fires or executes it : adds fact (action
part) to the database

Rules have names, many have time tag.
RI stops when problem solved or no rules are

applicable.

Pattern Matching: Unification

ES RULES with atomic formulas that are not FACTS
written in a triples form:

(x, attribute, value)
where a variable x is also called an entity

Atomic formulas that are NOT FACTS are:
(x, attribute, value)

FACTS are represented by similar triples, with entity as
a constant. i.e. they are:

(ID, attribute, value)

Pattern Matching: Unification

Pattern matching – is matching the variable x in the
triple

(x, attribute, value)
with a proper record in the database identified by
the key attribute ID, i.e. It

matching with the fact
(ID, attribute, value)

We write it as
(x, attribute, value) {x/ID} = (ID, attribute, value)

or
attribute(x, value) {x/ID} = attribute(ID, value)

Example
Lets look at a RULE in a predicate triple form

representation
(person, yearlyincome, >$15,000) &
(person, valuehouse, >$30,000) => (person, loantoget,

<$3,000)
Person: variable x

Rule Format is: C1 (x)&C2 (x) à A(x)

(x, yearlyincome, >$15,000) &
(x, valuehouse, >$30,000) => (x, loantoget, <$3,000)

In “Plain English”: If somebody has an yearly income greater the
$15,000 and his/hers house has a value greater the n$30,000, then
bank approves any loan smaller than $3,000.

Given Facts:
F1: (John, yearlyincome, >$15,000)
F2: (John, valuehouse, >$30,000)

PATTERN MATCHING
We assign (UNIFY) x/John (person/John)

We use the inference rule C1 (x)&C2 (x) à A(x) and matching
C1 (x)&C2 (x) with F1 & F1 for x =John, where

A(x): (x, loantoget, <$3,000) i.e. we write
C1(x) &C2 (x) à A(x) {x/John} ; F1 & F1

RI adds new fact
(John, loantoget, <$3,000)
to the DBF

During a cycle of RI, most of the time is spent on
pattern matching = unification
First the most popular efficient pattern matching
algorithm was RETE algorithm (Forgy 1982)

It is used in a rule-based language OPS5, a language
still being used for programming expert systems

Fogy gave a TALK in CS Stony Brook in Spring 2019 on
the newest version of the language OPS5
and improvements of the RETE algorithm

Both still going strong

There also are many excellent new unification
techniques and algotithms
They are mainly developed by researchers working
in Automated Theorem Proving field of AI
It is still a large and vibrant area of AI reasearch

Prolog is based on the predicate resolution and
They are used for Prolog improvements
Prolog is the most natural, efficient and modern
language to use in many AI applications

We will cover Propositional Resolution as the
next subject

ES Conflict Resolution

RI recognition – part of the cycle is divided into
two parts

1.Selection: identification of applicable rules
based on pattern matching and

2. Conflict resolution: choice of which rule to
fire (apply, execute)

There are many choice possibilities and we decide
what we want to use while designing the system

Conflict Resolution Heuristics

Here are some conflict resolution heuristics (choices)
Most specific rule

• Example: rules P => R, P & Q => S are both applicable,
• we choose P & Q => S as it is more specific (contains more

detailed information)
• The rule using the most recent facts : facts must have

time tags
• Highest Priority rule: rules must have assigned priority
• The first rule: rules are linearly ordered
• Principle: No rule is allowed to fire more then once

on basis of the same contents of DBF
• We eliminate firing the same rule all the time

Production Rules and Expert System Rules

Production rules are the rules in which actions are
restricted exclusively to ADD FACTS to the DBF

Expert Systems might contain also different rules;
like rules about rules (METARULES), DOMAIN-
FREE rules, DOMAIN specific rules, or others.

Rules can have names (can be numbers, like R1, R2,
… etc)

Rules often have time tags or other indicators,
depending of heuristics used by RI module.

Metarules

Metarules – are rules about rules.
Metarules may be domain-specific, such as:

IF the car does not start
THEN first check the set of rules

about the fuel system
Metarules may be Domain-free (not connected

with DBF) such as
IF the rules given by manual apply

AND textbook rules apply
THEN: check first manual rules

Advantages and Disadvantages of
Rules Based Expert systems

Advantage: modularity. Rules are independent
pieces of knowledge so may be added or
deleted.

They are easy to understand (should be)
Disadvantages: inefficiency of big production

systems with non-organized rules
Rules based expert systems are the most

popular

Forward Chaining
Data -> Rules -> Goal

Also called DATA DRIVEN, BOTTOM UP, or ANTECEDENT
chaining

During the SELECTION step of each cycle, the RI is looking for
applicable rules by MATCHING (unifying) condition part of a

rule with the CURRENT CONTENT of the DB;

Forward chaining is applied, i.e. the proper rule is FIRED and
a new FACT (action part) is added to the DB.

Process TERMINATES when the GOAL is reached, or when all
possible FACTS are already inferred from the INITIAL

database.

Backward Chaining
Also called GOAL-DRIVEN consequent chaining

- The production system ESTABLISHES whether a goal is
supported by a given database

Start with the goal
-Applicable RULES are found by matching ACTION parts with
the GOAL
C1∧ … ∧Cn è GOAL
Now the conditional part:
C1∧ … ∧Cn is checked against the DB.
If all are (after matching) in DB, the solution is reached.
If Ci is not in DB, we treat it as a SUBGOAL and repeat.

Backward Chaining (re-captured)

GOAL = Fact F
Selected rule (by matching action parts with F)

(R) C1∧ … ∧Cn è F

1.If all C1∧ … ∧Cn are in DB – End
2.Let C be any of C1∧ … ∧Cn
after unification and substitution, if needed.
CASE when Propositional ATOMIC Include negation
If ~C is in DB, (R) can’t be used and another rule should be selected
3. Neither C (nor ~C) is in DB, then
C is a SUBGOAL and we start over again as with F.
4. If no applicable rules exist, GOAL F is not established.
System may need new rules.

Usually, backward chaining is executed as depth-first search.
Backward chaining is used in applications with large data.

Forward chaining might produce too much.
Usually, mixed strategies are used.

Example (Busse book)
Knowledge representation = propositional logic

CASE WHEN ATOMIC: VARIABLES OR NEGATION OF VARIABLES
RULES:

R1: IF the ignition key is on
AND the engine won’t start
THEN the starting system (including battery) is faulty

R1 A∧BèE
R2: IF E AND the headlights work

THEN the starter is faulty
R2 E∧CèG

R3: IF E AND ~C
THEN the battery is dead

R3 E∧~CèI

Example (continued)
R4: IF the voltage test on the ignition switch shows 1 to 6
volts,

THEN the wiring between the ignition and the solenoid
is OK

R4 DèF
R5: IF F

THEN replace the ignition switch
R5 FèH

FACTS in the INITIAL DATABASE:
A: The ignition key is on
B: The engine won’t start
C: The headlights work
D: The voltage test on the solenoid shows 1 to 6 volts
^ |-----------------------semantics-----------------------------|
|
Syntax (in propositional logic representation): A, B, C, D

R1 A∧BèE
R2 E∧CèG
R3 E∧~CèI
R4 DèF
R5 FèH

Initial DB
IDB = {A, B, C, D}

Rules
GOAL:

Infer all possible facts from IDB

1. Rules are ordered by number
R1 < R2 < R3 < R4 < R5

2. And they are scanned by RI in this order and
inserted into a queue

Conflict Resolution: ORDER (1) and
Fire a rule from the front of the queue (and remove it)

STEP 1: Applicable: R1, R4 Queue (front to rear): R1, R4
Fire: R1 and add E to the IDB
NEWDB = {A, B, C, D, E}

STEP 2: (second cycle) E: The starting system is faulty is added
- R1 is no longer applicable, since its action would add E, which is
already in (new) DB (last in C.R.)
- R2 is applicable Queue (front to rear): R4, R2

Step2: R3 is not applicable; R4 is applicable (and is in queue);
R5 is not applicable.
R4 is FIRED from the FRONT of the queue, removed from the queue
and new fact

F: The wiring between the ignition and the solenoid is OK
Is added to the DB , now DBF= { A, B, C, D, E, F}

STEP 3 (third cycle) Queue: R2, R5
R5 is inserted, R2 is FIRED (and removed) and new fact

G: The starter is faulty
Is added to the DB, now DBF = {A, B, C, D, E, F, G}

STEP 4 (fourth cycle) Queue: R5
No new rules are applicable, so R5 is fired and new fact

H: Replace the ignition switch
Is added to the DB

STEP 5 No applicable rules (all are used!)
DBF = { A, B, C, D, E, F, G, H}

RI STOPS COMPUTATION

Search Space

ABCD

ABCDE ABCDF

ABCDEF ABCDEG ABCDEF ABCDFH

ABCDEFG ABCDEFH

ABCDEFGHABCDEFGH

ABCDEFG

ABCDEFGH

ABCDEFH ABCDEFG ABCDEFH

ABCDEFGH ABCDEFGH ABCDEFGH

R1

R1

R1

R4

R4

R4

R2

R2

R2 R2

R2

R2

R5

R5

R5

R5

R5R5

Goal: All possible facts deduced

Initial DB
IDB= {A, B, C, D}

Rules

EXAMPLE 2

GOAL
Use backward chaining to infer/reject

H∧I

First: Consider H. H is not in the DB. The only rule that matches H (action) is
R5: FèH

Look at F; It is not in the IDB, so it is a SUBGOAL. Applicable:
R4 DèF, and D is in the IDB.

So, F is SUPPORTED and hence H is supported.

Next: Consider I. I is not in the DB, applicable rule is
R3 E∧~CèI

C is in the DB, hence R3 cannot be used. R3 is the ONLY rule, hence I is not
supported and
GOAL H∧I is rejected.

R1 A∧BèE; R2 E∧CèG; R3 E∧~CèI;
R4 DèF; R5 FèH

Example 2 re-captured

Initial Database: DBF= {A, B, C, D}
Rules
R1: A & B => E R2: E &C => G
R3: E & ¬ C => I R4: D =>F
R5: F => H
Backward Chaining Goal : H & I
First: Consider H.
H is not in DBF only rule that matches H (as action) is R5.
R5: F => H
Look at F; F is not in DB, so F becomes a subgoal
Applicable: R4: D =>F, and D is in DBF so
F is supported and hence H is supported.

Example 2 continued

Next: check I.
I is not in DBF, only applicable rule is R3: E & ¬ C => I

C is in DB, hence R3 can’t be used.

R3 is the only applicable rule, hence I is not supported
and GOAL H & I is rejected.

Propositional Logic Conceptualization
Example 3

R1: If you are hot, then turn thermostat down
R2: If you are not hot and window is open, then

close the window
R3: If the thermostat is turned down and you

are cold, then open the window

1. Conceptualize this system in propositional logic
2. Design questions the program has to ask the user to

achieve the goal: “open the window” by backward
chaining and conflict resolution

Example 3 Rules revisited

R1: hot => turn down termostat
R2: ¬ hot & window open => close window
R3: thermostat down & cold => open window

GOAL: open window
The GOAL has to be reached by use of conflict

resolution and rules R1, R2, R3 from a certain
database of fact.

We need to build our DBF by asking user some
questions

ATOMIC: variables, negations of variables

Propositional Logic Conceptualization 1
CASE WHEN ATOMIC: VARIABLES OR NEGATION OF VARIABLES

H – you are hot ¬ H – you are not hot
O – window open (open window)
D – Thermostat down
W- close window (closed window)
C- you are cold
R1: H => D
R2: ¬ H & O => W
R3: D & C => O
Goal: reach O by backward chaining
- You need to build your DBF by asking questions.

Example 3
In order to reach the goal we have only one rule

applicable:
R3: D & C => O
We have two subgoals: D, C
We get D by R1: H => D and D becomes a subgoal.
No applicable rule, so we need ask a question

about H.
Question: Are you hot (H) ?
If answer is YES: we ADD H into DBF , i.e.
DBF = {H} and we apply (fire) R1: H => D and get D.
D is supported
We look now for C, no applicable rule, so we need ask

a question about C

Example 3 continued

Question: Are you cold (C)?
If answer is YES, we ADD C into DBF, and C is

supported ,
and the GOAL O is SUPPORTED.

If answer to the question: Are you hot (H) ?
is NO, we added ¬ H to DBF, i.e DBF = {¬ H} .
No applicable rule, we STOP,
GOAL O IS REJECTED.

Propositional Logic Conceptualization 2
CASE WHEN ATOMIC: VARIABLES OR NEGATION OF VARIABLES
H – you are hot
WO– window open
OW – open the window
D – Thermostat down
CW- close the window
WC- window closed
C- you are cold
R1: H => D
R2: ¬ H & WO => CW
R3: D & C => OW
Goal: reach OW by backward chaining
- You need to build your DBF by asking questions.

Propositional Logic Conceptualization 3
CASE WHEN ATOMIC: VARIABLES (no negation)

H – you are hot NH – you are not hot
WO– window open
OW – open the window
D – Thermostat down
CW- close the window
WC- window closed
C- you are cold
R1: H => D
R2: NH& WO => CW
R3: D & C => OW
Goal: reach OW by backward chaining
- You need to build your DBF by asking questions.

PREDICATE FORM Conceptualization

OBSERVATION:
FACTS are always true in ES Database

For example a Fact:
(car#42, battery, weak), or battery(car#42,weak)
means that in our database we have a record

Key Other
attribute

Other
attribute

Battery

Car#42 weak

Example 4: Predicate Conceptualization

Another way of writing the fact (car#42, Battery, weak) is:
Battery(ar#42, weak)
This is called a predicate form
Atomic formula written in a triple form is:
(x, Battery, weak) , or (ID, Battery, weak)
First is not a FACT, second is a FACT.
Atomic formula written in a predicate form is:

Battery(x, weak)
Atomic formula that is a fact is

Battery(c#42, weak)

Key Other attribute Other attribute Battery

car#42 weak

Example 5: given a DB

The DB represents the following FACTS: (in triple form)
F1. (C1, Bbttery, good)
F2. (C1, color, red)
F3. (C1, buy, no)
F4. (C2, battery, weak)
F5. (C2, color, black)
F6. (C2, buy, no)
We want to use the expert system rules to PUT cars into proper garages, i.e.

to fill missing values of the attribute PutGarage. We assume that we have
two garages: G1, G2.

WHAT IS WRONG WITH THIS PROBLEM???

Cars Battery Color Buy PutGarage

C1 good red no

C2 weak black no

WHAT IS WRONG WITH THIS PROBLEM???

The DB represents the following FACTS: (in triple form)
F1. (C1, battery, good)
F2. (C1, color, red)
F3. (C1, buy, no)
F4. (C2, battery, weak)
F5. (C2, color, black)
F6. (C2, buy, no)
We want to use the expert system rules to PUT cars into proper garages, i.e.

to fill missing values of the attribute PutGarage. We assume that we have
two garages: G1, G2.

NONE OF LISTED FACTS F1, F2, …F6 BELONGS to the DB!!!
ATTRIBUTES are: Battery, Color,Buy – NOT- battery,color, buy

Cars Battery Color Buy PutGarage

C1 good red no

C2 weak black no

Example 6: CORRECTED

The CORRECT DB representing FACTS: in PREDICATE Form is
F1. Battery(C1, good)
F2. Color(C1, red)
F3. Buy(C1, no)
F4. Battery(C2, weak)
F5. Color(C2, black)
F6. Buy(C2, no)
Use the expert system rules (next slide) to PUT cars into proper

garages, i.e. to fill missing values of the attribute PutGarage.
We assume that we have two garages: G1, G2.

Cars Battery Color Buy PutGarage

C1 good red no

C2 weak black no

Predicate Rules Interpreter RI

A Predicate Rule of inference of the Rule Interpreter is:
C1 (x)& … & Cn(x) => A(x) {x/ID}; C1(ID) …Cn (ID)

A(ID)
APPLICATION of the Predicate Rule of Inference means that
for a given rule of the production (expert) system ES

C1 & … & Cn -> A i.e. C1 (x)& … & Cn (x) -> A(x)
the rule interpreter RI will check database (or database of facts) and match

(unify) x with a proper record identifier ID (constant ID), if possible and
evaluate

C1 (x)& … & Cn (x){x/ID}= C1 (ID)& … & Cn (ID)
if all C1 (ID), … Cn (ID) belong to DBF, the Interpreter RI will deduce
A(x){x/ID}=A(ID) and add A(ID) to the database of facts DBF.

Example 5

Some Rules in our ES (in a triple form) are:
R1. (x, Battery, good) & (x, Color, red) =>
(x, PutGarage, 2)

R2. (x, Battery, weak) & (x, Buy, no) =>
(x, PutGarage, 1)
• Matching (Unification): we unify x in the R1 with C1 and we

get

(x, Battery, good) & (x, Color, red)){x/C1} = F1&F2
(x, PutGarage, 2){x/C1}= (C1, PutGarage, 2)

Example 5

Rules in our ES (in a triple form) are:
R1. (x, Battery, good) & (x, Color, red) =>
(x, PutGarage, 2)

R2. (x, Battery, weak) & (x, Buy, no) =>
(x, PutGarage, 1)
• Matching (Unification): we unify x in the rule R2 with C2 and

we get

(x, Battery, weak) & (x, Buy, no)){x/C2} = F4&F6
(x, PutGarage, 1){x/C2}= (C2, PutGarage, 1)

Example 5: Extended Data Base

We used the expert system rules to PUT cars into proper
garages, and
As a consequence we filled the
missing values of the attribute PutGarage.

EXERCISE: Repeat it all writing rules in PREDICATE Form

Cars Battery Color Buy PutGarage

C1 good red no 2

C2 weak black no 1

