Propositional Resolution Part 3

Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence

Resolution Strategies

 We present here some Deletion Strategies and discuss their Completeness.

Deletion Strategies are restriction techniques in which clauses with specified properties are eliminated from set of clauses **CL** before they are used.

Pure Literals

Pure literal definition

A literal is **pure** in **CL** iff it has no complementary literal in any other clause in **CL**

Example: CL = { {a,b},{¬ c, d},{c,b}, {¬ d}} a, b are pure, c, d, ¬ c, ¬ d are not pure.

c has complement literal ¬ c in {¬ c, d} and vice versa, ¬ c has complement literal c in {c,b}. d has a complement literal ¬d in the clause {¬ d} and vice versa ¬d has a complement literal d in {¬ c, d}.

1. Pure Literals Deletion Strategy

Strategy: Remove all clauses that contain Pure Literals.

Clauses that contain pure literals are useless for retention process. One pure literal in a clause is enough for the clause removal.

This Strategy is complete, i.e. CL ⊢ {} iff CL' ⊢ {} where CL' is obtained from CL by pure literal deletion

Example

$CL = \{\{\neg a, \neg b, c\}, \{\neg p, d\}, \{\neg b, d\}, \{a\}, \{b\}, \{\neg c\}\}$ d, ¬p are pure, **CL'** = {{¬a, ¬b, c}, {a}, {b}, {¬c}} {¬b, c} {C}

2. Tautology Deletion Strategy

- Tautology A clause containing a pair of Complementary Literals (a and ¬a)
- Tautology Deletion:
- **CL'** = Remove all Tautologies from **CL**
- Example:
- **CL** = {{ a, b, ¬a}, {b, ¬b, c}, {a}}
- **CL'** = {{a}}
- Tautology Strategy is **COMPLETE**.
 - CL is satisfiable ≡ CL' is satisfiable CL unsatisfiable ≡ CL' unsatisfiable

Exercise

- Example:
- **CL** = {{ a, ¬a, b}, {b, ¬b, c}} remove tautologies;
- **CL'** has no elements, i.e. **CL'** = φ ,
- **CL** is always satisfiable and so is **CL**['] as Φ is always satisfiable!

Exercise: Prove Correctness of Tautology delete strategy.

- Case 1: **CL** contains only tautologies
- In this case $CL' = \phi$ because Φ is always satisfiable!
- Case 2:

3. Unit Resolution Strategy

- A unit resolvent resolvent in which at least one of the parent clauses is a unit clause i.e. is a clause containing a single literal.
- A unit deduction all derived clauses are unit resolvents.
- A unit Refutation unit deduction of the empty clause { }.
- Example: {{a, b}, {¬a, c}, {¬b, c}, {¬c}} {¬a} {¬b}

{b}

Efficient but not Complete!

Unit Resolution not complete Example

- CL = {{a, b}, {¬a, b}, {a, ¬b}, {¬a, ¬b}}
 {b}
 {a}
 {¬a}
 {¬a}
 - **CL** is **unsatisfiable**, but does not have unit deduction.
- Horn Clause: a clause with at most one positive literal.
- **Theorem:** Unit Resolution is complete on Horn Clauses.

Example of Unit Resolution Deduction

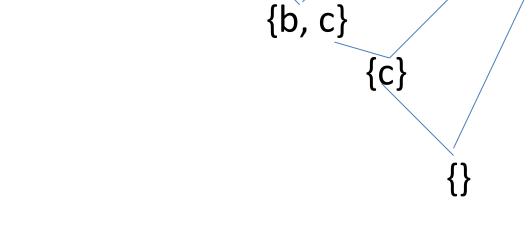
• **CL** = {{¬a, c}, {¬c}, {a, b}, {¬b, c}, {¬c}}

{c}

{b}

{--a}

CL is not Horn but CL⊢ {} by unit deduction.
Remark: if we get { } by unit deduction we are OK but if we don't get { } by unit deduction it does not mean that CL is satisfiable, because unit strategy is not a Complete Strategy on non- Horn clauses.


{ }

4. Input Resolution

- Input Resolution- At least one of the two parent clauses is in the initial database.
- Input Deduction- all derived clauses are input resolvents.
- Input Refutation- Input deduction of { }.
- THM 1: Unit and Input Resolution are equivalent.
- THM 2: Input Resolution is complete only on Horn Clauses.

Input Resolution Deduction

Example: CL = { $\{a, b\}, \{\neg a, c\}, \{\neg b, c\}, \{\neg c\}$ }

NOT Complete!

5. Linear Resolution

- Linear Resolution also called Ancestry-Filtered resolution is a slight generalization of Input Resolution.
- A Linear Resolution: At least one of the parents is either in the initial DB or is in an Ancestor of the other parent.
- A Linear Deduction: Uses only linear resolvents : each derived clauses is a linear resolvent
- A Linear Refutation: Linear deduction of { }.
- Linear Resolution is complete

Example • 📤 = {{a, b}, {¬a, b}, {a, ¬b}, {¬a, ¬ b}} {b} {a} {**-**b}

Here :

{a} is a parent of {¬b}

{b} is the ancestor of {¬b} (other parent of {¬b})

Linear Resolution

Linear Resolution is complete

- There are also more modifications of the LR that are **complete**
- Our Strategies work also for Predicate Logic Resolution.

Kowalski 1974, 1976 "Logic for problem solving" "Predicate Logic as a programming language".
Robinson 1965 "A Machinery Oriented logic based on the resolution principle" J Assoc. for Computing Machinery 12(1)