Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition D.

Input:
- Data partition D, which is a set of training tuples and their associated class labels;
- attribute_list, the set of candidate attributes;
- Attribute_selection_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a splitting_attribute and, possibly, either a split_point or splitting_subset.

Output: A decision tree.

Method:

1. create a node N;
2. if tuples in D are all of the same class, C then
 return N as a leaf node labeled with the class C;
3. if attribute_list is empty then
 return N as a leaf node labeled with the majority class in D; // majority voting
4. apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
5. label node N with splitting_criterion;
6. if splitting_attribute is discrete-valued and
 multway splits allowed then // not restricted to binary trees
 attribute_list ← attribute_list - splitting_attribute; // remove splitting_attribute
7. for each outcome i of splitting_criterion
 // partition the tuples and grow subtrees for each partition
 a) let D_i be the set of data tuples in D satisfying outcome i; // a partition
 b) if D_i is empty then
 c) attach a leaf labeled with the majority class in D to node N;
 d) else attach the node returned by Generate_decision_tree(D_i, attribute_list) to node N;
 endfor
8. return N;

Figure 6.4 Three possibilities for partitioning tuples based on the splitting criterion, shown with examples. Let A be the splitting attribute. (a) If A is discrete-valued, then one branch is grown for each known value of A. (b) If A is continuous-valued, then two branches are grown, corresponding to A ≤ split_point and A > split_point. (c) If A is discrete-valued and a binary tree must be produced, then the test is of the form A ∈ S_A, where S_A is the splitting subset for A.
Algorithm: Generate_decision_tree. Generate a decision tree from the given training data.

Input: The training samples, samples, represented by discrete-valued attributes; the set of candidate attributes, attribute-list.

Output: A decision tree.

Method:

1. create a node N;
2. if samples are all of the same class, C then
3. return N as a leaf node labeled with the class C;
4. if attribute-list is empty then
5. return N as a leaf node labeled with the most common class in samples; // majority voting
6. select test-attribute, the attribute among attribute-list with the highest information gain;
7. label node N with test-attribute;
8. for each known value a_i of test-attribute // partition the samples
9. grow a branch from node N for the condition test-attribute $=$ a_i;
10. let s_i be the set of samples in samples for which test-attribute $=$ a_i; // a partition
11. if s_i is empty then void;
12. attach a leaf labeled with the most common class in samples;
13. else attach the node returned by Generate_decision_tree(s_i, attribute-list-test-attribute);

Figure 7.3 Basic algorithm for inducing a decision tree from training samples.
Algorithm: Backpropagation. Neural network learning for classification, using the backpropagation algorithm.

Input: The training samples, samples; the learning rate, \(l \); a multilayer feed-forward network, network.

Output: A neural network trained to classify the samples.

Method:

1. Initialize all weights and biases in network;
2. while terminating condition is not satisfied {
 for each training sample \(X \) in samples {
 // Propagate the inputs forward:
 for each hidden or output layer unit \(j \) {
 \(I_j = \sum_i w_{ij}O_i + \theta_j \); // compute the net input of unit \(j \) with respect to the previous layer, \(i \)
 \(O_j = \frac{1}{1+e^{-I_j}} \); // compute the output of each unit \(j \)
 }
 // Backpropagate the errors:
 for each unit \(j \) in the output layer
 \(Err_j = O_j(1-O_j)(T_j-O_j) \); // compute the error
 for each unit \(j \) in the hidden layers, from the last to the first hidden layer
 \(Err_j = O_j(1-O_j) \sum_k Err_k w_{jk} \); // compute the error with respect to the next higher layer, \(k \)
 for each weight \(w_{ij} \) in network {
 \(\Delta w_{ij} = (l)Err_j O_i \); // weight increment
 }
 for each bias \(\theta_j \) in network {
 \(\Delta \theta_j = (l)Err_j \); // bias increment
 }
 }
}

Figure 7.9 Backpropagation algorithm.