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Propositional Resolution
Part 1



SYNTAX “dictionary”

Literal – any propositional VARIABLE a or  
negation of a variable ¬ a,  for a ∈ VAR
Example: variables: a, b, c ….   negation of 
variables: ¬a, ¬b, -d …
Positive Literal: any variable a ∈ VAR
Clause – any finite set of  literals
Example:  C1, C2, C3 are clauses where
C1 = {a, b} ,  C2 = {a, ¬ c} , C3 = { a, ¬a, ……,ak }



Syntax  “Dictionary”

Empty Clause:    {}  is an empty set  i.e.  a clause 
without elements

Finite set of clauses
CL  = { C1, …., Cn}

Example

CL = {{a}, { }, { b, ¬a} , {c, ¬ d}}



Semantics – Interpretation of Clauses
• Think semantically of a clause
• C = { a1, ……., an}     as disjunction, i.e.

C is logically equivalent  to
a1 U a2 U …… U an ai∈ Literal

• Formally – given a truth assignment v : VAR -> {0, 1}  
we extended  it to set of all CLAUSES CL as follows:

v* :   CL -> {0, 1}
v*(C) = v*(a1) U ….. U v*(an) 

for any clause C in CL, where 
0 – False,     1 – True

Shorthand : v* = v



Satisfability, Model, Tautology

Example:  let v : VAR -> {0, 1} be such that 
• v(a) = 1, v(b) = 1 , v(c)= 0  and let 

C = { a, ¬ b, c, ¬a} 
We evaluate :

v(C) = v(a) U ¬v(b) U v(c) U ¬v(a) = 
1 U 0 U 0 U 1 = 1
OBSERVE that  v(C) =1 for all v,  i.e. the clause

C = { a, ¬ b, c, ¬a} is a Tautology 



Satisfability, Model, Tautology
Definitions
1. For any clause C, and any truth assignment v 
we write v I= C and say that  v satisfies C iff

v(C) =1 
2. Any v such that v I= C  is called a MODE L  for 

C
3. A clause C is satisfiable iff it has a MODEL, 

i.e.
C is satisfiable iff there is a v such that v I= C 

4. A clause C is  a tautology iff v I= C for all v,
i.e all truth assignments v are models for C



Notations

• a, a, a    is a finite sequence of 3 elements
• {a, a, a} = {a}    is a finite set
• a, b, c ≠ b, a, c are  different sequences
• {a, b, c} = {b, a, c} are the same sets
• {a, a, b, c} is a  multi – set  (if needed)



Sets of Clauses CL
DEFINITIONS 
1.  A clause  C is   unsatisfiable iff it has  no MODEL 

i.e. v(C) =0   for all truth assignments v

Remark:   the empty clause {} is the only unsatisfiable clause

Let  CL = { C1, ….,Cn)  be a  finite set of clauses. 

2.  We extended v : VAR -> {0, 1} to   any set of clauses CL   

v ( CL ) = v(C1) ∧ ……. ∧ V(Cn)

A finite set of clauses  CL is semantically equivalent to a 
conjunction of   all clauses in the set CL



Unsatisfiability
Definitions
1. A set of clauses CL is satisfiable
iff it has a model,  i.e. iff ∃v  v( CL)= 1

2.  A set of clauses CL is unsatisfiable
iff it does not have a model, i.e.  iff

∀v v(CL) =0.

Remark: 
If {} ∈ CL then     CL is unsatisfiable



Unsatisfability

Consider  a set of clauses
CL = {{a}, {a,b}, {¬ b}}

CL is satisfiable because any v, such that
v(a) =1, v(b) =0 is a model for CL

Check:  v(CL) = 1 ∧ (1 U 0) ∧ 1 = 1

FACT: When  {a}  and  {¬ a} are  in  CL,
then the  set CL is unstisfiable

Remember:   (a ∧ ¬ a )  is a contradiction 



Syntax and Semantics

• Example:
• C1 = { a, b, ¬c}, C2 ={c , a} - syntax 
• C1  =  a U b U ¬c  - semantics
• C2 = c U a  - semantics

• CL = {C1, C2} = {{a , b, ¬c} , {c , a}} – syntax

CL = (a U b U ¬c) ∧ (c U a)   - semantics



Syntax and Semantics

Definitions:

CL is satisfiable iff there is  v, such that v( CL ) = 1

CL   is unsatisfiable iff for all v, v(CL  ) = 0

• CL = { C1,C2,…… ,Cn}  - synatx
• CL  = C1 ∧ …… ∧ Cn - semantics



Semantical Decidability 

• A statement:
• “ A finite set  CL  of clauses is/ is not satisfiable” 

is    a decidable statement.      
• CL has  n propositional variables, hence we have 

2∧n possible  truth assignments  v to examine  
and evaluate  whether  v(CL) = 1 or v(CL) = 0

• This is called Semantical Decidability
• Problem:  Exponential  complexity



Syntactical  Decidability Method: 
Resolution Deduction

• Goal : We want to show that a finite  set  CL of 
clauses is unsatisfiable

• Method : Resolution deduction : 
• Start with CL;  apply a transformation rule called 

Resolution as long as it is possible.
• If you get {}, then  answer is Yes, i.e.

CL is unsatisfiable
• If you never get {} , then answer is NO, i.e CL  is 

satisfiable



Resolution Completeness Theorem 1

Completeness of the Resolution:
CL  is unsatisfiable iff we obtain  the empty 

clause {} by a multiple use of the Resolution 
Rule
• Symbolically:    CL  ⊢ {} 
• It means we deduce the empty clause   {} 

from    CL by  use of the resolution rule; 
• We prove  {} from CL by resolution 



Resolution Completeness Theorem 1

|=   CL denotes    CL is a tautology
=| CL   denotes    CL is unsatisfiable (contradiction)

• We write symbolically:

Resolution  Completeness Theorem 1
=| CL          iff CL  ⊢ {}



Refutation

• Refutation:   proving the contradiction

In  classical logic we have that:

A formula A is a tautology    iff ¬A   is a contradiction

Symbolically:      |= A    iff =|¬A

Observe: 

|=  (A1 ∧ …… ∧ An => B)  iff =| (A1 ∧ …… ∧ An ∧ ¬B)

Because ¬ (A => B) ≡ (A ∧ ¬B )



Refutation 
By  Resolution Completeness Theorem this is  almost
equivalent to

|= (A1 ∧ …… ∧ An => B)  iff (A1 ∧ …… ∧ An ∧ ¬B) ⊢ {}

Almost- means not YET Resolution works for clauses not 
formulas!
The IDEA is the following:
to prove    B from   A1, ….,An     we  keep A1,….., An , ADD 

¬B to it   and  use    the Resolution Rule
If  we   get  {}, we have proved (A1 ∧ …… ∧ An => B)  

It is called a proof by REFUTATION; to prove C we start with
¬C  and if we get a contradiction  {}, we have proved C



Formulas – Clauses 
Resolution works only for clauses

To use Resolution Deduction we  need to transform our 
formulas into clauses i.e. we need to prove the following

Theorem
For any  formula A ∈ F, there is a set of clauses   CLA  

such that  A is logically equivalent to   the set of 
clauses CLA

CLA is called a clausal form of  the formula A 

We have good  set of rules for  automatic transformation  of
A into its  clausal form and we will study it as next step



Completeness 

• Resolution Completeness 2
For any propositional formula A

|= A    iff CL¬A ⊢{} 
where     CL ¬A   is the  clausal form of  ¬A

• Resolution Proof of A definition:
⊢R  A    iff CL¬A ⊢ {}

Resolution Completeness 2:
|= A   iff ⊢R  A 



Resolution Rule   R

• C1(a) means: clause C1 contains a positive literal a 
• C2(¬a) means: clause C2 contains a negative literal ¬a

• Resolution Rule  R  (two Premises)
C1(a) : C2(¬ a) Resolve on a 

(C1-{a} U C2-{¬a}) <- Resolvent

Clauses C1(a) and C2(¬a) are called a complementary pair



Resolution Rule
• Resolution Rule takes 2 clauses and returns one. 

We usually write it in a form of a graph:
• Definition:   C1(a), C1(¬a)  is called  a complementary 

pair

• C1(a) C1(¬a) 
Resolve on a

(C1-{a}) U (C2-{¬a})   <- Resolvent on a 



Resolution Rule R

• Clauses are SETS! 
• {C1, C2} Complementary Pair
C1 = {a ,b ,c , ¬d} C2= {¬ a ,¬b ,d}

Resolve 
on a

{ b, c, ¬d, ¬b, d}    Resolvent on a



Example
C1 = {a ,b ,c , ¬d}        C2= {¬ a ,¬b ,d}

{ a ,c , ¬d, ¬ a d} 

• Resolution Rule: R  (Two Premises)

C1(b) : C2(¬ b) Resolve on b
(C1-{b} U C2-{¬b }) <- Resolvent



Exercise
• CL   - set of clauses 
Find all resolvents of  CL

It  means  locate all clauses in CL that are 
Complementary Pairs and Resolve them

C1 = {a ,b ,c , ¬d} C2= {¬ a ,¬b ,d}
CL = {C1, C2}   has  3 Complementary Pairs

C1(a), C2(¬a) – P1
C1(b), C2(¬b) – P2
C2(d), C1(¬d) – P3 



Example
• CL ={C1 , C2} ={C2 , C1} 
C1={a, b, c, ¬ d} C2= {¬ a ,¬b ,d}

Remember:
Resolution Rule uses one literal at the time! 

C1(a); C2(¬a) Resolve on a : we get {b , c, ¬d, ¬ b, d}
C1(b); C2(¬b) Resolve on b : we get { a, c, ¬d, ¬ a, d}
C1(d); C2(¬d) Resolve on d : we get {a, b, c, ¬ a, ¬ b}



Example

C1(b) : C2(¬b) Pair {C1 C2} 
(C1-{b}) U (C2-{¬b})

{a, b, c, ¬ d}  {¬ a ,¬b ,d}
Resolve on b

{a, c, ¬d, ¬a, d}  <- Resolvent on b



Example

C1(d) : C2(¬d) on   {C1 C2} 
(C1-{d}) U (C2-{¬d})

{a, b, c, ¬ d} ;{¬ a ,¬b ,d}
Resolve on d

{a, b , c, ¬a, ¬ b}



Example

C1 ={a, b, c, ¬ d} ; C2 ={¬ a ,¬b ,c ,d}
Resolve on b

{a, c, ¬d, ¬a, d} 

Two clauses (one complementary pair) can 
have more than one resolvent – you can also  
resolve the complementary pair  C1 C2 on a



Example

• We can also resolve {C1 , C2}  on a  
{a, b, c, ¬ d}  ,   {¬ a ,¬b ,d}                          {C1 , C2}

Resolve on a
{b , c, ¬d, ¬ b, d}

These are all resolvent of pair {C1 C2}:
{b , c, ¬d, ¬ b, d},  { a, c, ¬d, ¬ a, d}
{a, b, c, ¬ a, ¬ b}



Resolution Deduction
• CL  - set of clauses 
Procedure:   Deduce a clause  C from CL:     CL ⊢R {C}
Start with CL , apply the resolution  rule  R to CL 

Add  resolvent to CL and
Repeat adding resolvents to already obtained set o fresolvents

until you get C

Example
CL = {{ a, b}, { ¬ a, c}, { ¬ b, c}}

R on a {b ,c} 

R on b CL ⊢R  {c }
{c }



Example

• CL = {{ a, b},{ ¬ a, c},   { ¬ b, c}}

Resolve on b
{a, c}

Resolve on a

{c}

We have 2 possible deduction of  { c } from CL

CL ⊢R { c }



Example
• CL = {{ a, b},{ ¬ a, c},{ ¬ b, c}, {¬ c}}

{b,c}
{c}

{}             CL ⊢R {}
CL   is unsatisfiable by Completeness Theorem 

=|CL iff CL ⊢R {} 
Resolution deduction is not unique!
Next: Strategies for Resolution



Example
• CL= {{ a, b},{ ¬ a, c},{ ¬ b, c}, {¬ c}}

{¬a} 
{b}

{c}
{} 

Another deduction of {} from   CL



Exercise
• Let CL = {{ a, b},{ ¬ a, c},{ ¬ b, c}}
Find all possible deduction from   CL
Remember:
1. If you get {},  it means CL is unsatisfiable.
2. If you never get {},  it means CL is satisfiable.
1 and 2 is true by Completeness Theorem:

=|  CL iff CL ⊢ {}  
CL   is unsatisfiable iff there is a deduction of {} 

from  CL 
CL  is satisfiable iff there is NO deduction of {} 

from CL 



Exercise
• CL  = {{ a, b},{ ¬ a, c},{ ¬ b, c}}
Derivation 1: {{ a, b},{ ¬ a, c},{ ¬ b, c}}

R on a {b, c}
{c}      R on b STOP

Derivation 2: {{ a, b},{ ¬ a, c},{ ¬ b, c}}
R on b {a, c}

{c}     R  on a STOP
No more (possible) Derivations, i.e. by 

Completeness Theorem we have that 
CL is satisfiable 



Exercise
• CL is unsatisfiable iff there is deduction of {} from it, i.e.

CL ⊢R {} 

CL is satisfifable iff never CL ⊢R {}  (must cover all possibilities of 
deduction)

CL = {{ a, b},{¬b},{a, c},{ ¬a, d}}
{a} 

{b, d} 
{d}   STOP

This is just  one derivation. 
You must consider ALL possible  derivations  and show that 
none ends with {} to prove that CL is satisfiable



Exercise
• Given:    CL = {C1, C2, C3, C4}
CL ={{a ,b ,¬ b}, {¬ a ,¬ b, d},{a ,b , ¬c}, {¬ a ,c ,b ,e}} 
1. Find all complementary pairs . Here they are:
{C1, C2} {C1, C4} ,
{C3, C2} {C2, C3} , 
{C3, C4} , {C2, C4} 
2. Find all resolvents for your complementary pairs
For example: C1 = {a ,b ,¬ b} , C2 = {¬a , ¬b , d} has 2 

resolvents. 
Resolve on a:      {¬b, d, b}  
Resolve on b;

{a, ¬a, d ,¬b }



Exercise 
• CL  = {C1, C2},  for C1 ={a ,b ,c ,¬d}, C2 = {¬ a ,¬ b, d}

CL has 3 resolvents :-
1. {¬a ,¬b , a, b, c} – resolve on d
2. {¬a ,c ,¬d ,  d, a} – resolve on b
3. {b, c ,¬d ,d} – resolve on a

Let now  CL = {C1, C2, C3},  for C1={a},  C2={b, ¬a}, 
C3={¬b, ¬a}
Exercise:

Find all Complementary Pairs + find all their 
resolvents



Propositional Resolution
Part 2



GOAL:  Use Resolution to prove/ disapprove  |= A 

PROCEDURE 
Step 1: Write ¬A and transform ¬A info set of 

clauses     CL{¬A} using Transformation rules
Step 2: Consider   CL{¬A}  and look at if you can get a 

deduction of {} from   CL{¬A}

ANSWER
1.    CL{¬A} ⊢R {}   – Yes,  |= A
2.    CL{¬A} ⊢ {}  (i.e. you never get {}) – No,  not|= A



Rules of transformation
• Rules of transformation of a formula A into a 

logically equivalent set of clauses      CLA

• Rule (U):  (AUB) + Information 
What “Information” mean?
Example: a, b, (a U ¬( a=> b)), ¬c

a, b, a ,¬( a=> b), ¬c 
a,b and ¬c  is Information 
Rule (U) :   I , (AUB), J

I, A, B, J
I,J  --- Information around



Implication Rule (=>)

• I, (A=>B), J (A=>B)

I, ¬A, B, J                                    ¬A , B
Example: a, (a U b), (a => ¬a), (a ∧ b), c

(=>)
a, (a U b), ¬ a, ¬ a, (a ∧ b), c

(U)
a, a, b, ¬ a, ¬ a, (a ∧ b), c

next step?
we need  (∧) Rule!



Conjunction Rule (∧)

I, (A ∧B), J (A∧B)
(∧)                                            (∧)

I , A, J  I, B, J A               B
Example: 

a, a, b, ¬a, ¬a, (a ∧ b), c
(∧)

a, a, b, ¬a, ¬a, a, c a, a, b, ¬a, ¬a, b, c

STOP when get only literals – called leaves 
Form clauses out of the  leaves



Set of Clauses 

Procedure: Leaves – to – Clauses 
1. make SETS out of each leaf;
each leaf  becomes  a clause C
2. make  a set of clauses CL as a set of all clauses  C 
obtained in 1. 

Leaf 1:   {a, a, b, ¬a, ¬a, a, c} = {a, b, ¬a, c}
Leaf 2:   {a, a, b, ¬a, ¬a, b, c} = {a, b, ¬a, c}
• Observe that we end-up with only one set of 

clauses
• CL ={Leaf 1, Leaf 2} =  { {a, b, ¬a, c} }



Negation of Implication Rule (¬ =>) 
I, ¬ (A =>B), J ¬ (A => B)

(¬=>)
I , A, J I , ¬B, J A                    ¬B
Example: 

a, b, a, ¬ (a => b), ¬ c

a, b, a, a, ¬c a, b, a, ¬b, ¬c
Stop – when only literals : 
Form clauses out of leaves  a, b, a, a, ¬c and 
a, b, a, ¬b, ¬c



Clauses 

• Leaf1:  a, b, a, a, ¬c  makes clause {a, b, ¬c}
• Leaf 2: a, b, a, ¬b, ¬c makes clause {a, b, ¬b, c}

• CL = {{a, b, ¬c}, {a, b, ¬b, c}}

• CL is set of clauses corresponding to  
a, b, a, ¬ (a => b), ¬ c 



Negation of Disjunction Rule (¬ U) 

I, ¬(A UB), J ¬(A U B)
(¬U)

I , ¬A, J I , ¬B, J ¬A                    ¬B

• Rule (¬ U)  coresponds to  DeMorgan Law:
¬(AUB) ≡ (¬A ∧ ¬B)



Negation of Conjunction Rule (¬∧)

I, ¬(A ∧B), J ¬(A ∧ B)
(¬∧) (¬∧)

I , ¬A, ¬B, J ¬A, ¬B

Rule (¬∧) corresponds to  DeMorgan Law
¬(A ∧ B) ≡ (¬A U ¬B)



Negation Rule (¬¬)

I, ¬¬ A,  J ¬¬A
(¬¬) (¬¬)

I , A, J A

Negation Rule (¬¬) coresponds to
¬¬ A ≡ A

Transformation Rules : 
(∧), (U), (=>), (¬∧), (¬U), (¬=>)



Transformation Rules Shorthand Form

(AUB)   (U) ¬(A U B) (¬U)
A, B ¬A                             ¬B

(A ∧B)    (∧) ¬(A ∧ B) (¬∧)
A B ¬A, ¬B
(A=>B)  (=>)  ¬(A => B)  (¬=>) 

¬A, B A                        ¬B
¬¬A   (¬¬)  + Keep all Information

A End when all leaves are literals



Example
• Let A be a Formula (((a=> ¬b)U c) ∧ (¬a U ¬b))
• Find CLA

• (((a=> ¬b)U c) ∧ (¬a U ¬b))
((a=> ¬b)U c)                   ( ¬a U ¬b)

(a=> ¬b), c ¬a , b STOP
¬ a, ¬b, c    STOP

CLA = {{¬ a, ¬b, c} , { ¬a , b } }

A    ≡ CL A 



ARGUMENTS

• From (premises) A1,……., An we conclude B
A1 ,……., An

B
Definition: 
Argument A1 ,……., An     is    VALID iff

B
|=   ((A1 ∧ ……. ∧ An) => B)

• Otherwise Argument   is NOT VALID



ARGUMENTS

Valid Arguments ≡ Tautologically Valid

A1,……., An, C 
can be formulas  of  Propositional or 
Predicate Language



Validity of Arguments
Remember:      |= A   iff =| ¬A
Tautology (always true), Contradiction (always false)
This means that if we want to decide |= A we decide =|¬A 

and use Resolution to do that
STEPS
Step 1:  Negate A, i.e. take  ¬A and find the set of clauses 

corresponding to ¬A,  i.e. find   CL{¬A} 

Step 2:  Use Completeness of Resolution 
|= A  iff CL  {¬A} ⊢R {}                  i.e. 

1. Look for  a resolution deduction of  {}  from CL{¬A} 

2. if YES – we have     |= A
3. If there is no deduction of {} we have:   NOT |= A



Basic Theorems
T1.    =| CL       iff CL ⊢R {}

CL is inconsistent iff there is a resolution 
deduction of {} from CL

T2.  For any formula A, there is a set of clauses CLA 

such that    A ≡    CL A

T3.  |= A   iff =| ¬A 
By T2 we get that 

|= A      iff =| CL{¬A} 

And by T1 and T3 we get
T4.      |= A            iff CL{¬A} ⊢R {}



Exercise

• Prove By Propositional Resolution 
|= (¬(a=>b) => (a ∧¬ b))

Remember: |= A   iff =| ¬A  + use Resolution
Steps
Step 1: Find set of clauses corresponding to ¬A i.e.

find   CL{¬A}

Step 2: Find deduction of {} from CL{¬A}

i.e. show  that     CL{¬A} ⊢R {}

DO IT!



Exercise Solution
• Step 1: Negate A and find the set of clauses for ¬A i.e. find   CL{¬A} 

• ¬( ¬(a=>b) => (a∧¬b))

¬(a=>b)   ¬(a∧¬b)
a         ¬b               ¬a, ¬¬b 

¬a, b
Clauses:    {a} {¬b} {¬a, b}

CL {¬A}  ={{a}, {¬b}, {¬a, b}}
{b} Step 2:  Check if     CL{¬A} ⊢R {} – YES!

{}

Remark: NOT|=A iff there is no deduction of {} from CL{¬A}



Back To Arguments
• Use resolution to show that from A1,……., An

we can deduce B

We “can” deduce B from A1,……., An means validity of 
the argument    A1,……., A        

B
This means that we have to show that 

|= (A1 ∧ ……. ∧ An => B)  

We have to use Resolution to prove that
(A1 ∧ ……. ∧ An => B) is a tautology 



Arguments
|= (A1 ∧ ……. ∧ An => B)    iff

=| ¬ (A1 ∧ ……. ∧ An => B)   iff
=| (A1 ∧ ……. ∧ An ∧¬B)

• Step 1: we  transform (A1 ∧..∧ An ∧¬B) to clauses 
• Take A1,……., An and find 

CLA1 , ….,   CLAn

and also find CL¬B and then form
CLA1 U ….  CLAn U CL¬B = CL  

Step 2:   examine whether     CL ⊢R {}



Remember

Argument    A1,……., An   is   valid
B

iff CLA1 U …. U CLAn U CL¬B ⊢R {} 

Argument is not valid 
iff never CLA1 U …. U CLAn U CL¬B ⊢R {} 

We have some Resolution Strategies  that allow 
us  to cut down number of cases to consider    



Example
Check if you can deduce
B = (¬(a U ¬ b)=> (¬ a ∧ b)) 

from A1 = ((a=>¬b)=>a) and A2 = (a=>(b=>a))
Procedure:
1. Find CL{A1} ,     CL{A2}  and       CL{¬B}

2. Form CL =     CL{A1} U  CL {A2} U CL{¬B}

3. Check if   CL ⊢R {}   or   if  never CL ⊢R {} 

Yes, we can No, we can’t 



Example Solution
A1 = ((a => ¬b) => a)

¬(a=>¬b),  a

a, a ¬¬b, a

b, a

We get:       CLA1 = {{a}, { b, a}}

A2 = ((a=>(b=>a))

¬a , (b=>a)

¬a, ¬b, a

We get:             CLA2 = {¬a, ¬b, a}



Example Solution
¬B =  ¬(¬(a U ¬ b)=> (¬ a ∧ b)) 

¬(a U ¬b ) ¬ (¬ a ∧ b)

¬a ¬ ¬ b ¬ ¬a, ¬b

b a, ¬b

CL = {{a}, {b, a}, {¬a, ¬b, a}, {¬a}, {b}, {a, ¬b}}

Remove Tautology Strategy gives us the set 

CL = {{a}, {b, a}, {¬a}, {b}, {a, ¬b}}



Example Solution

• CL = {{a}, {b, a}, {¬a, ¬b, c}, {¬a}, {b}, {a, ¬b}}
{a}    R on b 

{} 
Yes Argument is Valid

Next :    Strategies for Resolution



Propositional Resolution
Part 3



Resolution Strategies

• We present here some Deletion Strategies and 
discuss their Completeness.

Deletion Strategies are restriction techniques in 
which clauses with specified properties are 
eliminated from set of clauses CL before they are 
used.



Pure Literals

Definition
A literal is pure in CL iff it has no 
complementary  literal in any other clause in  CL

Example:       CL = { {a, b}, {¬ c, d}, {c,b}, {¬ d}}
a, b  are pure and  c, d, ¬ c, ¬ d are not pure

c has complement literal ¬ c in {¬ c, d} and 
¬ c has complement literal c in   {c,b}  
d has  a complement literal ¬d in the clause  {¬ d} and 
¬d has  a complement literal d in {¬ c, d}



S1:  Pure Literals Deletion Strategy

S1 Strategy:  Remove all clauses that contain  
Pure Literals

Clauses that contain pure literals are useless for 
retention process.

One pure literal  in a clause is enough for the 
clause removal

This Strategy is complete, i.e. 
CL  ⊢ {}     iff CL’  ⊢ {}
where CL’   is obtained from CL by  pure literal 

clauses deletion



Example

• CL  = {{¬a, ¬b, c}, {¬p, d}, {¬b, d}, {a}, {b}, {¬c}} 
d, ¬p  are  pure,

CL’ = {{¬a, ¬b, c}, {a}, {b}, {¬c}}

{¬b, c} 

{c}

{}   



s2. Tautology Deletion Strategy 

• Tautology – a clause containing a pair of 
complementary literals  ( a and ¬a)

• S2: Tautology Deletion:
CL’  =  Remove all Tautologies from CL   

• Example:
• CL  = {{ a, b, ¬a}, {b, ¬b, c}, {a}}

CL’ = {{a}}
• Tautology Deletion Strategy S2  is COMPLETE.
CL is satisfiable ≡     CL‘  is satisfiable
CL unsatisfiable ≡      CL‘ unsatisfiable



Exercise
• Example:
• CL = {{ a, ¬a, b}, {b, ¬b, c}}  - remove tautologies- get

CL’ with no elements, i.e.        CL‘  = φ
CL  is  always satisfiable and so  is CL‘ as Φ is 

always satisfiable!

Exercise
Prove correctness of Tautology Deletion  Strategy



S3. Unit Resolution Strategy
• A unit resolvent – resolvent in which at least one of 

the parent clauses is a unit clause i.e. is a clause  
containing  a single literal. 

• A unit deduction – all derived clauses are unit 
resolvents.

• A unit Refutation – unit deduction of the empty 
clause {}.

• Example: {{a, b}, {¬a, c}, {¬b, c}, {¬c}}
{¬a}              {¬b}

{b}         
{}     Efficient but not Complete!



Unit Resolution not complete 
Example

• CL = {{a, b}, {¬a, b}, {a, ¬b}, {¬a, ¬b}}
{b}

{a}            {¬a}
{}

CL  is unsatisfiable, but does not have unit 
deduction. 

Horn Clause: a clause with at most one positive 
literal. 

Theorem: Unit Resolution is complete on Horn 
Clauses.



Example of  Unit Resolution Deduction
• CL  = {{¬a, c}, {¬c}, {a, b}, {¬b, c}, {¬c}}

{¬a} 
{b}

{c}
{}

CL is not Horn but   CL⊢ {} by  unit deduction.
Remark: if we get { }  by unit deduction we are OK 

but if we don’t get { } by unit deduction it does not 
mean that CL  is satisfiable, because  unit strategy 
is  not a  Complete Strategy on non- Horn clauses.   



S4. Input Resolution 

• Input Resolution- At least one of the two 
parent clauses is in the initial database.

• Input Deduction- all derived clauses are input
resolvents

• Input Refutation- Input deduction of  {}
THM 1: Unit and Input Resolution  are 

equivalent.
THM 2: Input Resolution  is complete only on 

Horn Clauses 



Input Resolution Deduction

Example:     CL = {{a, b}, {¬a, c}, {¬b, c}, {¬c}}

{b, c} 
{c}

{}

NOT Complete!



5. Linear Resolution 

• Linear Resolution also called Ancestry-Filtered 
resolution is a slight generalization of Input 
Resolution.

• A Linear Resolution: At least one of the parents is 
either in the initial DB or is in an Ancestor of the 
other parent.

• A Linear Deduction: Uses only linear resolvents : 
each derived clauses is a linear resolvent

• A Linear Refutation: Linear deduction of { }.
• Linear Resolution is complete



Example
CL = {{a, b}, {¬a, b}, {a, ¬b}, {¬a, ¬ b}} 

{b}
{a}

{¬b}
{}

Here :
{a} is a parent of {¬b}
{b} is the ancestor of {¬b} (other parent of {¬b})



Linear Resolution 

Linear Resolution is complete
There are also more modifications of the LR that are 

complete

Our Strategies work also for Predicate Logic 
Resolution 
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