Cse352 Artifficial Intelligence Short Review for Midterm

Professor Anita Wasilewska Computer Science Department Stony Brook University

Midterm

- Midterm INCLUDES
- CLASSIFICATION
- CLASSIFOCATION by Decision TREES
- and
- PRODUCTION SYSTEMS
- PROPOSITIONAL RESOLUTION
- material you needed to review for Q1

Learning Process

- Questions:
- Describe and discuss all stages of the Data Mining-Learning Process
- Describe the role of Preprocessing stage and its main methods
- Discuss the Data Mining –Learnong Proper stage
- Describe what is Descriptive/ non Descriptive Learning Which Models you would use for the Descriptive Learning and which for the non DescriptiveLearning
- How and what decides which type of Learning is the best to use (implement)
- Give examples of types of applications and the best Models (algorithms) for them

- Describe what is CLASSIFICATION; type of data, goals and applications
- Describe all stages of the classification process
- Describe and discuss basic classification Models and their differences
- Discuss the Decision Tree Induction and its strengths and weaknesses
- Define a **CLASSIFIER**
- Describe a process of building a CLASSIFIER

Given a classification dataset **DB** with a set

A = {*a1, a2,..., an*} of **attributes** and a **class** attribute **C** with values

{*c1, c2,..., ck*} - k classes

Definition 1

Any expression a1 = v1 & ... & ak = vk where $ai \in A$ and vi are corresponding values of attributes from A is called a **DESCRIPTION** Any expression C = ci is for $ci \in \{c1, c2,..., ck\}$

Is called a **CLASS DESCRIPTION**

Definition 2

A CHARACTERISTIC FORMULA is any expression

 $C = ck \implies a1 = v1 \& ... \& ak = vk$

We write is as

 $CLASS \Rightarrow DESCRIPTION$

Definition 3

A **DETERMINANT FORMULA** is any expression

 $a1 = v1 \Lambda ... \Lambda ak = vk \implies C = ck$

We write it as

 $\mathsf{DESCIPTION} \Rightarrow \mathsf{CLASS}$

Definition 4

A characteristic formula CLASS ⇒ DESCRIPTION is called a CHARACTERISITIC RULE of the classification dataset DB iff it is TRUE in DB, i.e. when the following holds {o: DESCRIPTION} ∩ {o: CLASS} not= Ø

Where **{o: DESCRIPTION}** is the set of all records of DB corresponding to the **DESCRIPTION**

{o: CLASS} is the set of all records of DB corresponding to the **CLASS**

Definition 5 A discriminant formula DESCRIPTION ⇒ CLASS is called a DISCRIMINANT RULE of DB iff it is TRUE in DB, i.e. the following conditions hold

- **1.** {o: DESCRIPTION} not= \emptyset
- 2. {o: DESCRIPTION} \subseteq {o: CLASS}

PROBLEM 1

Prove

that for any **classification** data base **DB** and any of its **DISCRIMINANT RULES** of the form

DESCRIPTION ⇒ **CLASS**

the formula \subseteq **CLASS \Rightarrow DESCRIPTION**

is a **CHARACTERISTIC RULE** of the **DB**

PROBLEM 1 Solution

By **definition 5**, for any database DB : DESCRIPTION ⇒ CLASS is a DISCRIMINANT RULE iff

1. {o: DESCRIPTION} not= \emptyset

2. {o: DESCRIPTION}⊆{o: CLASS}
Therefore,

{o: DESCRIPTION} \cap {o: CLASS} not= \emptyset and by Definition 4 CLASS \Rightarrow DESCRIPTION

Is the **CHARACTERISITIC RULE**

PROBLEM 2

Given a dataset:

Record	A1	A2	A3	A4	С
01	1	1	1	0	1
02	2	1	2	0	2
03	0	0	0	0	0
04	0	0	2	1	0
05	2	1	1	0	1

Find the set **{o :DESCRIPTION}** for the following descriptions

a1 = 2 & a2 = 1
 a3 = 1 & a4 = 0
 a2 = 0 & a3 = 2
 c=1
 c=0

PROBLEM 2 SOLUTION

Find the set **{o :DESCRIPTION}** for the following descriptions

1)
$$a1 = 2 \& a2 = 1$$

- 3) a2 = 0 & a3 = 2
- 4) c=1
- 5) c=0

Answer : {01 } Answer : {01 , 05} Answer : {04} Answer : {01,05} Answer : {03 ,05}

PROBLEM 3

For the following formulae use proper definitions to determine (**it means prove**) whether **they are / are not DISCRIMINANT / CHARACTERISTIC RULES** of our dataset.

6) $a1 = 1 \& a2 = 1 \Rightarrow C = 1$

7) $C = 1 \implies a1 = 0 \& a2 = 1 \& a3 = 1$

8) C = 2 ⇒ a1 = 1

9) C = 0 \Rightarrow a1 = 1 & a4 = 0

10) a1 = 2 & a2 = 1 & a3 = 1 \Rightarrow C = 0

11) a1 = 0 & a3 = 2 \Rightarrow C = 1

PROBLEM 3 SOLUTION

For the following formulae use proper definitions to determine (**it means prove**) whether **they are / are not DISCRIMINANT / CHARACTERISTIC RULES** of our dataset.

6) $a1 = 1 \& a2 = 1 \Rightarrow C = 1$

{o1} is a subset of {o1, o5} so this is a DISCRIMINANT rule

7) C =1 ⇒ a1 = 0 & a2 = 1 & a3 = 1
 {o: a1 = 0 & a2 = 1 & a3 = 1 } is an empty set so this is
 not a CHARACTERISTIC rule

8) C = 2 ⇒ a1 = 1

As the intersection is empty so this is **not** a **CHARACTERISTIC** rule

9) C = 0 ⇒ a1 = 1 & a4 = 0 ----- {o3, o4} /\ {o5} is empty set so this is not a CHARACTERISTIC rule

10) a1 = 2 & a2 = 1 & a3 = 1 ⇒ C = 0 ----- {o5} is not a subset of {o3 , o4} , so this is **not a DISCRIMINANT** rule

11) a1 = 0 & a3 = 2 \Rightarrow C = 1 ----- {o4} is not a subset of {o1, o5}, so this is **not a DISCRIMINANT** rule

- Describe what is Classification; which is the goal, what data one needs etc....
- Describe all stages of the Classification Process
- Describe basic methods of training and testing
- Describe the process of building a CLASSIFIER
- What is a **CLASSIFIER**?

Problem: Classification by DTREE

- 1. Use the data below build a CLAFSSIFIER by basic DTREE algorithm
- 2. Use 2 different testing Method of your choice and compare the results CLASSIFICATION DATA

Record	A1	A2	С
1	1	1	1
2	0	0	0
3	0	1	0
4	0	0	0
5	1	1	1
6	1	1	0
7	0	0	0
8	1	0	1

Data Mining Process

Preprocessing stage

- Preprocessing:
- includes all the operations that have to be performed before a data mining algorithm is applied

- Data in the real world is dirty: incomplete, noisy and inconsistent.
- Quality decisions must be based on quality Data.

Preprocessing stage

- Data cleaning
- Fill in missing values, smooth noisy data(binning, clustering, regression), identify or remove outliers, and resolve inconsistencies
- Data integration
- Integration of multiple databases, data cubes, or files

Preprocessing stage

- Data transformation
- Normalization and aggregation
- Data reduction and attribute selection
- Obtains reduced presentation in volume but produces the same or similar analytical results (stratified sampling, PCA, cluster)
- Data discretization
- Part of data reduction but reduces the number of values of the attributes by dividing the range of attributes into intervals (segmentation by natural partition, hierarchy generation)

Learning Proper

 Learning proper is a step in the DM process in which algorithms are applied to obtain patterns in data.

• It can be re-iterated- and usually is

Descriptive / non descriptive models

- Statistical descriptive
- Statistical data mining uses historical data to predict some unknown or missing numerical values
- Descriptive data mining aims to find patterns in the data that provide some information about what the data contains
- often presents the knowledge as a set of rules of the form IF.... THEN...

Models

- Discriptive: Decision Trees, Rough Sets, Classification by Association
- Statistical: Neural Networks, Bayesian Networks, Cluster, Outlier analysis, Trend and evolution analysis
- Optimization method: Genetic Algorithms can be descriptive

• Classification:

- Finding models (rules) that describe (characterize) or/ and distinguish (discriminate) classes or concepts for future prediction
- Classification Data Format:
- a data table with key attribute removed.
- Special attribute, called a class attribute must be distinguished.
- The values: c1, c2, ...cn of the class atrribute C are called class labels
- The class label attributes are discrete valued and unordered.

- Goal:
- FIND a minimal set of characteristic and/or discriminant rules, or other descriptions of the class C, or all, or some other classes

• We also want the found rules to involve as few attributes as it is possible

- Stage 1: build the basic patterns structuretraining
- Stage 2: optimize parameter settings; can use (N:N) re-substitution- parameter tuning
- Re-substitution error rate = training data error rate
- Stage 3: use test data to compute- predictive accuracy/error rate - testing

Decision Tree

- DECISION TREE
- A flow-chart-like tree structure;
- Internal node denotes an attribute;
- Branch represents the values of the node attribute;
- Leaf nodes represent class labels

DT Basic Algorithm

- The basic DT algorithm for decision tree construction is a greedy algorithm that constructs decision trees in a top-down recursive divide-and-conquer manner
- Tree STARTS as a single node representing all training dataset (data table with records called samples)
- IF the samples (records in the data table) are all in the same class, THEN the node becomes a leaf and is labeled with that class
- The algorithm uses the same process recursively to form a decision tree at each partition

DT Basic Algorithm

- The recursive partitioning **STOPS** only when any one of the following conditions is TRUE
- 1. All records (samples) for the given node belong to the same class
- 2. There are no remaining attributes on which the samples (records in the data table) may be further partitioned – a LEAF is created with majority vote for training sample
- 3. There is no records (samples) left a LEAF is created with majority vote for training sample
- Majority voting involves converting node N into a leaf and labeling it with the most common class in D which is a set of training tuples and their associated class labels

Attribute Selection Measures

- Some Heuristics:
- **Dtree:** some Attribute Selection Measures
- Information Gain, Gini Index

 We use them for selecting the attribute that "best" discriminates the given tuples according to class

Rule Based Systems REVIEW Exercise

- Exercise 1
- Here are three simple **expert rules**
- R1: If your savings are small, then don't invest in stocks
- R2: If you have no children and large income, then invest in stocks
- R3: If you have children and small income, then invest in savings

Conceptualize rules R1, R2, R3
in Predicate Form using predicates
 attribute(x, value of attribute)
 attribute(object, value of attribute)

WRITE a format of a database TABLE needed for your conceptualization

REMARK: In order to express the rules **Predicate Form**, we must first define appropriate ATTRIBUTES and their values

- We have the following ATTRIBUTES:
- Savings
 Values: small, large
- Income
 Values: small, large
- InvestStocks
 Values: yes, no
- InvestSavings
- Values: yes, no
- Children
 - Values: yes, no

- Exercise 2
- The initial database has the following FACTS
- F1: Savings(John, small)
- F2: Children(John, no)
- F3: Income(John, large)
- Are these FACTS true in Exercise 1 Data Table for some record o =John?
- Design a Data Table 2 in which the above
 FACTS are true
- Can you deduce InvestStocks(John, yes) on the base of the Data Table 2

Exercise 1: Predicate Form Conceptualization Data Table Example

Records	Savings	Income	InvesrStocks	InvestSavings	Children
0 ₁	small	small	yes	yes	yes
0 ₂	large	small	no	no	no
0 ₃	small	large	yes	yes	no

Rules in Predicate Form

- RULES:
- R1: Savings(x,small) → InvestStock (x, no)
- R2: Children(x, no) /\ Income(x, large) → InvestStocks(x, yes)
- R3: Children(x, yes)) /\ Income(x, small)→ InvestSavings(x,yes)

Rules in Predicate Form

- RULES:
- R1: Savings(x,small) → InvestStock (x, no)
- R2: Children(x, no) /\ Income(x, large) → InvestStocks(x, yes)
- R3: Children(x, yes)) /\ Income(x, small)→ InvestSavings(x,yes)

Exercise 1: Rules in Predicate Form

- RULES:
- **R1:** Savings(x, small) \rightarrow InvestStock (x, no)
- R2: Children(x, no) /\ Income(x, large)→
 InvestStocks(x, yes)
- R3: Children(x, yes)) /\ Income(x, small)→ InvestSavings(x, yes)

PART3: Exercise 2

- Exercise 2
- The initial database has the following FACTS
- F1: Savings(John, small)
- F2: Children(John, no)
- F3: Income(John, large)
- 1. Are these FACTS true in Exercise 1 Data Table for a record o = John?
- 2. Design a Data Table 2 in which the above FACTS are true
- **3.** Can you deduce InvestStocks(John, yes) on the base of the Data Table 2

Part 3: Exercise 3

- Given rules from Exercise 1:
- R1: If your savings are small, then don't invest in stocks
- R2: If you have no children and large income, then invest in stocks
- R3: If you have children and small income, then invest in savings

Conceptualize rules R1, R2, R3
 In Propositional Logic in two ways:

- Rules admit only atomic formulas; i.e. rules are built from propositional variables only – call the set of rules PR1
- Rules admit atomic formulas and negation of atomic formulas – call obtained set of rules PR2

Part 3: Exercise 3

- Write initial databases B1 and B2
 of facts corresponding to the facts F1, F2, F3

 from Exercise 2 for
- (1) propositional conceptualization 1.
- (2) propositional conceptualization 2.
- (3) use corresponding rules from sets
 PR1, PR2 to deduce all facts from
 B1 and B2, respectively

Use Conflict Resolution from Busse Handout