Classification by Association

Cse352
Artificial Intelligence

Professor Anita Wasilewska

Generating Classification Rules by Association

When mining association rules for use in classification we are only interested in association rules of the form

$$p1 ^p2 ^\dots pk \rightarrow class = c$$

where the rule antecedent is a conjunction of items

```
p1, p2, :::, pk associated with a class label c
```

- The process of finding such rules is called
- Classification by Association

Example: Original Data

Student	Grade	Income	Buys
CS	High	Low	Milk
CS	High	High	Bread
Math	Low	Low	Bread
CS	Medium	High	Milk
Math	Low	Low	Bread

STEP 1: Data Conversion Converted Data

Student = CS (I1)	Student =math (I2)	Grade = high (I3)	Grade =medium (I4)	Grade =low (I5)	Income =high (I6)	Income =low (I7)	Buys =milk (I8)	Buys =bread (I9)
+	-	+	-	-	-	+	+	-
+	-	+	-	-	+	-	-	+
-	+	-	-	+	-	+	-	+
+	-	-	+	-	+	-	+	-
-	+	-	-	+	-	+	-	+

Step 2: Apriori Algorithm Generating 1-itemset Frequent Pattern

Scan D for support count of each candidate

Item Set	Support Count
{I1}	3
{I2}	2
{I3}	2
{I4}	1
{I5}	2
{16}	2
{17}	3
{I8}	2
{19}	3

choose (no need for **pruning** here)candidates with support count >=minimum support count

Support Count
3
2
2
2
2
3
2
3

C1

L1

Let, the minimum support count be 2
Since we have 5 records => minimum Support = 2/5 = 40%
Let, minimum confidence required is 70%

Generating 2-itemset Frequent Pattern

Generate C2

candidates
from L1

>

Item Set {I1,I2} {I1,I3} {I1,I4} {I1,I5} {I1,I6} {I1,I7} {I1,I8} {I1,I9} {I2,I3} {I2,I4} {I2,I5} {12,16} {I2,I7} {12,18} {12,19} {I3,I4} {I3,I5} {13,16} {13,17} {13,18} {I3,I9} {14,15} {I4,I6} {I4,I7} {I4,I8} {14,19} {I5,I6} {15,17} {15,18} {I5,I9} {I6,I7} $\{16,18\}$ {I6,I9} {I7,I8} {I7,I9} {I8,I9}

No need of **pruning** here-Scan D for count of each

candidate

Item Set	Support
	Count
{I1,I2}	0
{I1,I3}	2
{I1,I4}	1
{I1,I5}	0
{I1,I6}	2
{I1,I7}	1
{I1,I8}	2
{I1,I9}	1
{12,13}	0
{12,14}	0
{12,15}	2
{12,16}	0
{I2,I7}	2
{12,18}	0
{12,19}	2
{13,14}	0
{13,15}	0
{13,16}	1
{13,17}	1
{13,18}	1
{13,19}	1
{I4,I5}	0
{14,16}	1
{I4,I7}	0
{I4,I8}	1
{14,19}	0
{15,16}	0
{15,17}	2
{15,18}	0
{15,19}	2
{16,17}	0
{16,18}	1
{16,19}	0
{I7,I8}	1
{I7,I9}	2
	

choose

candidates

with support

count >= minimum

support count

Item Set	Support Count
{I1,I3}	2
{I1,I6}	2
{I1,I8}	2
{I2,I5}	2
{I2,I7}	2
{I2,I9}	2
{I5,I7}	2
{15,19}	2
{17,19}	2

L2

C2

C2

0

{I8,I9}

Generating Candidates: C_k

• Join Step: C_k is generated by **joining** L_{k-1} with itself

 Prune Step: Any (k-1)-item set that is not frequent cannot be a subset of a frequent k-item set

Example: Joining and Pruning

1. The join step: To find Ck, a set of candidate k-itemsets is generated by joining Lk-1 with itself.

L_k – Itemsets C_k – Candidates

For example in our case:

Considering {I2,I5}, {I7,I9} from L2 to arrive at C3 we Join L2*L2

and we obtain for example {I2,I5,I7}, {I2,I5,I9} as resultant candidates in C3 generated from L2

Considering {I1,I3}, {I1,I6} from L2 we generate a candidate {I1,I3,I6} in C3

Example: Joining and Pruning

2. The prune step:

Ck is a superset of Lk, that is, its members may or may not be frequent

Ck however, can be huge and we prune it applying Apriori Principle "if A is a frequent item set, then each of its subsets is a frequent item set"
It is expressed by formulation of the

Prune Step: Any (k-1)-item set that is **not frequent cannot** be a subset of a frequent k-item set

Thus, {I2,I5,I7}, {I2,I5,I9} from join step are considered since all their subsets are frequent

but {I1,I3,I6} is **discarded** since it subset {I3,I6} is **not frequent**, i.e. was not in **L2**

Generating 3-itemset Frequent Pattern

Step3: Classification by Association

- When generating classification by association rules
- we are only interested in association rules of the form
- \circ (p1^p2 ^...^pl) \rightarrow class = C
- where the rule antecedent is a conjunction of items
- p1, p2, :::, pl associated with a class label C
- In our example class is either 18 or 19
- as we want to predict whether a student with given characteristics buys Milk or buys Bread

Generating Classification Rules by Association

Let minimum confidence required be 70%

- For example, let's consider 4-item frequent set
- I={I2,I5,I7,I9} where I9 represents buys-Bread
- Its nonempty subsets needed to create association rules
- (we write {2} instead of {I2} .. etc) are:
- {2}, {5}, {7}, {9},
- {2,5}, {2,7}, {2,9}, {5,7}, {5,9}, {7,9},
- {2,5,7}, {2,5,9}, {2,7,9}, {5,7,9}
- To create **classification rules** we consider **only** subsets that contain the class item **9**

Generating Classification Rules by Association

Consider 3- itemset Frequent Sets {2,5,9}, {2,7,9}, {5,7,9}

We create **classification** by association rules as follows

```
R2: 5 ^ 7 → 9 [40%,100%]

• Confidence = sc{I5,I7,I9}/ sc{I5,I7} = 2/2 = 100%

• R2 is selected

• R3: 2 ^ 7 → 9 [40%,100%]

• Confidence = sc{I2,I7,I9}/ sc{I2,I7} = 2/2 = 100%

• R3 is selected

• R4: 2 ^ 5 → 9 [40%,100%]

• Confidence = sc{I2,I7,I9}/ sc{I2,I7} = 2/2 = 100%

• R4 is selected
```

Generating Classification by Association Rules

Consider 2- itemset Frequent Sets {2,9}, {5,7}, {5,9}, {7,9}, and {1,8} from L2

We create **classification by association rules** as follows

```
R5: 5 \rightarrow 9
                                     [40%,100%]
   Confidence = sc\{15,19\}/sc\{19\} = 2/2 = 100\%
 • R5 is Selected
R6: 2 \rightarrow 9
                                    [40%,100%]
 \circ Confidence = sc{I2,I9}/ sc{I9} = 2/2 = 100%
 • R6 is Selected
R7: 7 \rightarrow 9
                                    [40%,100%]
   Confidence = sc{I7,I9}/sc{I9} = 2/2 = 100\%
   R7 is Selected
R8: I1 \rightarrow I8
                                       [40\%, 66\%]
  Confidence = sc{I1,I8}/sc{I1} = 2/3 = 66.66\%
```

R8 is **Rejected**

List of Selected Classification by Association Rules

```
• 2 ^5 ^7 \rightarrow 9 [40%,100%]
• 2 ^5 \rightarrow 9 [40%,100%]
• 2 ^7 \rightarrow 9 [40%,100%]
• 5 ^7 \rightarrow 9 [40%,100%]
• 7 \rightarrow 9 [40%,100%]
• 2 \rightarrow 9 [40%,100%]
```

- We reduce the **confidence** to **66%** to include **I8**
- $1 \rightarrow 8$ [40%,66%]

Test Data

Student	Grade	Income	Buys
Math	Low	Low	Bread
CS	Low	Low	Milk
Math	Low	Low	Milk
Math	Low	Low	Bread
CS	Medium	High	Milk

• First Tuple:

Can be written as $12 \& 15 \& 17 \rightarrow 19$ [Success]

The above rule is correctly classified

And hence the Math student with low grade and low income buys bread

Second Tuple:

Can be written as $I1 \rightarrow I8$ [Error]

The above rule is **not correctly** classified

Third Tuple:

Can be written as $I2 ^ I5 ^ I7 \rightarrow I8$ [Error]

The above rule is **not correctly** classified

Test Data

Student	Grade	Income	Buys
Math	Low	Low	Bread
CS	Low	Low	Milk
Math	Low	Low	Milk
Math	High	Low	Bread
CS	Medium	High	Bread

• FourthTuple:

Can be written as I2 ^ I7 → I9 [Success]

The above rule is **correctly** classified

And hence the Math student with low grade and low income buys bread

• Fifth Tuple:

Can be written as $I1 \rightarrow I9$ [Success] The above rule is **correctly** classified

Hence we have 80% predictive accuracy And 20% Error rate