Cse352 Artifficial Intelligence Classification Learning Short Review

Professor Anita Wasilewska Computer Science Department Stony Brook University

Data Mining Process

Preprocessing stage

Preprocessing:

 includes all the operations that have to be performed before a data mining, learning algorithm is applied

- Data in the real world is dirty: incomplete, noisy and inconsistent.
- Quality decisions must be based on quality Data.

Preprocessing stage

- Data cleaning
- Fill in missing values, smooth noisy data (binning, clustering, regression), identify or remove outliers, and resolve inconsistencies
- Data integration
- Integration of multiple databases, data cubes, or files

Preprocessing stage

- Data transformation
- Normalization and aggregation
- Data reduction and attribute selection
- Obtains reduced presentation in volume but produces the same or similar analytical results (stratified sampling, PCA, cluster)
- Data discretization
- Part of data reduction but reduces the number of values of the attributes by dividing the range of attributes into intervals (segmentation by natural partition, hierarchy generation)

Learning, Data Mining Proper

- DM, Learning proper is a step in the
- DM, Learning process in which algorithms are applied to obtain patterns in data.

It can be re-iterated- and usually is

Descriptive/Non-Descriptive Models

- Statistical and Descriptive
- Statistical models use historical data to predict some unknown or missing numerical values
- Descriptive models aim to find patterns in the data that provide some information about what the data contains
- In case of Classification they often present the knowledge as a set of rules of the form IF....
 THEN...

Classifications Models

 Descriptive: Decision Trees, Rough Sets, Classification by Association

 Statistical: Neural Networks, Bayesian Networks, Cluster, Outlier analysis, Trend and evolution analysis

 Optimization method: Genetic Algorithms – can be descriptive

Classification

Classification:

- Finding models (rules) that describe (characterize) or/ and distinguish (discriminate) classes or concepts for future prediction
- Classification Data Format:
- a data table with key attribute removed.
- Special attribute, called a class attribute must be distinguished.
- The values: c1, c2, ...cn of the class atrribute C are called class labels
- The class label attributes are discrete valued and unordered.

Classification

- Goal:
- FIND a minimal set of characteristic and/or discriminant rules, or other descriptions of a class C, or all classes, or some classes

 We also want the found rules to involve as few attributes as it is possible

Classification

- Stage 1: build the basic patterns structuretraining
- Stage 2: optimize parameter settings; can use (N:N) re-substitution- parameter tuning
- Re-substitution error rate = training data error rate
- Stage 3: use test data to compute- predictive accuracy/error rate - testing

Decision Tree

- DECISION TREE
- A flow-chart-like tree structure;
- Internal node denotes an attribute;
- Branch represents the values of the node attribute;
- Leaf nodes represent class labels

DT Basic Algorithm

- The basic DT algorithm for decision tree construction is a greedy algorithm that constructs decision trees in a top-down recursive divide-and-conquer manner
- Tree STARTS as a single node representing all training dataset (data table with records called samples)
- IF the samples (records in the data table) are all in the same class, THEN the node becomes a leaf and is labeled with that class
- The algorithm uses the same process recursively to form a decision tree at each partition

DT Basic Algorithm

- The recursive partitioning STOPS only when any one of the following conditions is TRUE
- 1. All records (samples) for the given node belong to the same class
- 2. There are no remaining attributes on which the samples (records in the data table) may be further partitioned – a LEAF is created with majority vote for training sample
- 3. There is no records (samples) left a LEAF is created with majority vote for training sample
- Majority voting involves converting node N into a leaf and labeling it with the most common class in D which is a set of training tuples and their associated class labels

Attribute Selection Measures

- Some Heuristics:
- Some Decision Tree Attribute Selection Measures are:
- Information Gain, Gini Index

 We use them for selecting the attribute that "best" discriminates the given tuples according to class

Neural Networks

- Neural Network is a set of connected INPUT/OUTPUT UNITS, where each connection has a WEIGHT associated with it
- Neural Network learns by adjusting the weights so as to be able to correctly classify the training data and hence, after testing phase, to classify unknown data
- Neural Network needs long time for training Determining network topology is difficult
- Choosing single learning rate impossible (train with subset)
- Neural Network has a high tolerance to noisy and incomplete data
- NN is generally better with larger number of hidden units

Neural Networks

- The inputs to the network correspond to the attributes and their values for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- Inputs are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although often only one or two
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction

Neural Networks

- For each training sample, the weights are first set random then they are modified as to minimize the mean squared error between the network's classification (prediction) and actual classification
- Backpropagation Algorithm:
- STEP ONE: initialize the weights and biases
- STEP TWO: feed the training sample
- STEP THREE: propagate the inputs forward
- STEP FOUR: backpropagate the error
- STEP FIVE: backpropagate the weights, biases
- STEP SIX: repeat and apply Terminating Conditions

Backpropagation Formulas

Back propagation

- Terminating Conditions:
- Process Stops when:
- All wij in the previous epoch are below some threshold
- The percentage of samples misclassified in the previous epoch is below some threshold
- a pre-specified number of epochs has expired

Building a classifier

- Building a classifier consists of two phases: training and testing.
- We use the training data set to create patterns: rules, trees, or to train a Neural or Bayesian network
- We evaluate created patterns with the use of test data
- We terminate the process of building a classifier
- if it has been trained and tested and the predictive accuracy is on an acceptable level.
- CLASSIFIER is a final product of the process.

 PREDICTIVE ACCURACY of a classifier is a percentage of well classified data in the test data set.

Training and Testing

- The main methods of predictive accuracy evaluations are:
- Re-substitution (N; N)
- Holdout (2N/3; N/3)
- k-fold cross-validation (N- N/k; N/k)
- Leave-one-out (N-1; 1)