
The Definition of Algorithm

The Definition of Algorithm – p.1/31

An informal discussion

� Informally speaking, an algorithm is a
collection of simple instructions for carrying
out a task

� Note: in everyday life algorithms are called
procedures or recipes

� Algorithms play an important role in
mathematics: Ancient mathematical literature
contains descriptions of algorithms for a
variety of tasks:

�

finding prime numbers

�

finding the greatest common divisors

�

� � �

Algorithms abound in contemporary
mathematics

The Definition of Algorithm – p.2/31

Algorithm: the concept

� The notion of algorithm itself was not defined
precisely until the twentieth century

� Before 20-th century mathematicians had an
intuitive notion of what algorithms were and
relied on that notion when using algorithms

� Intuitive notion of algorithm was insufficient for
gaining deeper understanding of algorithms

� Hilbert’s program forced the development of a
formal notion of an algorithm

The Definition of Algorithm – p.3/31

Hilbert’s program

� In 1900, David Hilbert delivered an address at
the International Congress of Mathematicians
in Paris

� In his lecture, Hilbert identified 23
mathematical problems and posed them as a
challenge for the coming century

� Among these problems, 10-th problem
required a “process according to which it can
be determined whether a polynomial has an
integral root"

Note: Hilbert did not use the term algorithmThe Definition of Algorithm – p.4/31

More on Hilbert’s 10-th problem

� A polynomial is a sum of terms, where a term
is a product of certain variables and
constants called coefficients

� Example:

�

Terms:

� � ��� ��� �

,

	 � � ,
� � �� ��
 �
,

� � �, �� �

�

Polynomial:

� � �� ��� � � 	 � � �
 � � �� �
 � � � � � � �� �

� Polynomial root: if
��� � � �� � � � � � is a

polynomial, a root of is an assignment

�� � �,� � �

, � � � ,� � � ! to the variables � � � �� � � � �

such that
��" �
#

�� � � � $ � % &

� A root is integral if " �
#

�� � � � $ are integers
The Definition of Algorithm – p.5/31

Observations

� Hilbert’s 10-th problem is unsolvable: i.e.,
there is no algorithm that can decide whether
a polynomial

��� � � �� � � � � � has an integral
root.

� The intuitive concept of algorithm was
useless for showing that no algorithm exists
to solve Hilbert’s 10-th problem

� Proving that an algorithm doesn’t exist to
solve a given problem requires a formal
definition of algorithm.

Note: proving the existence of an object can be done by identifying one;The Definition of Algorithm – p.6/31

Algorithm: formal definition

� Alonzo Church and Alan Turing in 1936 came
with formal definitions for the concept of
algorithm

� Church used a notational system called

�

-calculus to define algorithms

� Turing used his “Turing Machines" to define
algorithms

� These two definitions were shown to be
equivalent

Note: this connection between the informal concept of algorithm and the

precise definition given by Church and Turing is called Church-Turing

thesis

The Definition of Algorithm – p.7/31

Algorithm: more formal definitions

Other formal definitions of algorithms have been
provided by: Kleene using recursive functions,
Markov using rewriting (derivation) rules with a
grammar called normal algorithms.

Essentially all these formal concepts of algorithm

are equivalent among them and are equivalent

with Turing Machines

The Definition of Algorithm – p.8/31

Solving Hilbert’s problem

In 1970 Yuri Matijasevic̆, building on work of

Martin Davis, Hilary Putnam, an Julia Robin-

son showed that no algorithm exists for testing

whether a polynomial has integral roots

The Definition of Algorithm – p.9/31

Understanding Matijasevic̆ work

Let us rephrase Hilbert’s tenth problem using our
terminology:

� Consider the language:

� � �� � �

is a polynomial with an integral root

�

� Hilbert’s tenth problem asks in essence
whether is decidable

� The answer is negative

The Definition of Algorithm – p.10/31

A simpler problem

Consider only polynomials in one variable such
as

��� � % �� 	
�

�� � � �
�

� Let ��� � �� � �

is a polynomial over � with integral coefficients

�

� A Turing Machine � that recognizes �

follows:

�� = “The input is a polynomial
�

over the variable x

1. Evaluate

�

with � set successively to the values 0,
1,-1,2,-2,3,-3, � � �
If at any point the polynomial evaluates to

�

accept"

Note, a similar machine, , can be designed for

the language . However, and � are recog-

nizers, not deciders.
The Definition of Algorithm – p.11/31

Analyzing �

� If has an integral root, � will eventually
find it and accept

� If has no integral root, � will run forever

Note: the integral roots " of a polynomial in � , if
they exist, must lie in the interval

� �
��� � �

��

� � � �
� � � �

��

where:
1.

�

is the number of terms in

�

,

2.

� � � � is the coefficient with the largest absolute value, and

3.

�� is the coefficient of the highest order term.
The Definition of Algorithm – p.12/31

A TM that decides �

We can use the inequality � � ��� �����

� � � � ��� ����� to
design an algorithm

�
� that decides � :

� �� = “The input is a polynomial

�

over the variable x

1. Evaluate

�

with � set successively to the values

�
	

�
	 � � 	 �
	 � � 	 	
	 � 	 	 � � �

 � � �
�� � �

�� 	
�

�� � �
��

�

If at any point the polynomial evaluates to

�

accept; otherwise
reject."

Note: since there are only a finite number of in-

tegers in the interval

�

� � � � ��� �
� � � � ���
�

,

�
� always

terminate. Therefore

�
� is a decider of � .The Definition of Algorithm – p.13/31

Matijasevic̆ theorem

Matijasevic̆ has shown that it is impossible to cal-

culate such bounds for multi-variable polynomials.

Hence, is undecidable

The Definition of Algorithm – p.14/31

A turning point

� We continue to speak of Turing machines, but
our real focus is on algorithms

� Turing machine merely serves as a precise
model for the definition of algorithm.
Therefore we can skip over extensive theory
of Turing machines

� We only need to be comfortable enough with
Turing machine to be sure that they capture
all algorithms

Note: recently more powerful models of algorithm are developed under

the concept of hypercomputation. See journal "Theoretical Computer

Science, 317 (2004)" for a collection of papers on this issue.

The Definition of Algorithm – p.15/31

Standardizing our model

Question: what is the right level of detail to give
when describing a Turing machine algorithm?

Note: this is a common question asked espe-

cially when preparing solutions to various prob-

lems such as exercises and problems given in as-

signments and exams during the process of learn-

ing Theory of Computation

The Definition of Algorithm – p.16/31

Answer

The three possibilities are:
1. Formal description: spells out in full all 7 components of a Turing

machine. This is the lowest, most detailed level of description.

2. Implementation description: use English prose to describe the
way Turing machine moves its head and the way it stores data on
its tape. No details of state transitions are given

3. High-level description: use English prose to describe the
algorithm, ignoring the implementation model. No need to
mention how machine manages its head and tape.

The Definition of Algorithm – p.17/31

Note

� So far we have used both formal description,
and implementation description

� Here we set up a format and notation for
describing Turing machine while approaching
decidability or computability theory

Definition: an algorithm is a TM in the standard
representation a

asee A. I. Mal’cev, Algorithms and recursive functions, Walter-Noordhoff Pub-

lishing, Groningen, The Netherlands, for other definitions

The Definition of Algorithm – p.18/31

Our standard

� The input to a Turing machine is always a
string

� If we want an object, other than a string as
input, we must first represent that object as a
string

� Note: strings can easily represent polynomials, graphs,

grammars, automata, and any combination of these objects

The Definition of Algorithm – p.19/31

Encoding objects

� Our notation for encoding an object into its
string representation is

� �

� If we have several objects � , �, � � � , � we
denote their encoding into a string by

� � � � �� � � � � �

Note:

1. Encoding itself can be done in many ways. It doesn’t matter which
encoding we pick because a Turing machine can always translate
one encoding into another.

2. The encoding procedure depends upon the domain of application.
Hence, we assume that the encoding of an object

�

is

� � �

.
The Definition of Algorithm – p.20/31

Decoding the input

A Turing machine may be programmed to decode

the input representation so that it can be inter-

preted the way we intend.

The Definition of Algorithm – p.21/31

Description of a TM

� A Turing machine algorithm is described with
an indented segment of text in quotes

� The algorithm is broken into stages, each
stage involving many individual steps of
computation

� The block structure of the algorithm is
indicated by further indentation

� The first line of the algorithm describes the
input which is a string �

� If the input is the encoding of an object such
as

� �
the Turing machine first implicitly test

whether the input properly encodes and
rejects it if it doesn’t.

The Definition of Algorithm – p.22/31

Example TM

� Let be the language consisting of all strings
representing undirected graphs that are
connected.

� Recall:
1. A graph

�

is a tuple

� � � �
	

� �
where

�

is a set of nodes
and

�

is a set of edges, i.e.
� � � ����� 	 ��	
� � �� 	 �	
 � �

;

2. A graph

�

is connected if every node can be reached from
every other node traveling on edges of the graph.

� Notation:

 � � � � � � �

is a connected undirected graph

�

The Definition of Algorithm – p.23/31

A TM deciding

�

= “On input

� � �

, the encoding of

�

1. Select the first node of

�

and mark it

2. Repeat the following stage until no new nodes are marked

3. For each node in

�

, mark it if it is attached by an edge to a
node that is already marked

4. Scan all the nodes of

�

to determine whether they all are marked.
If they are accept; otherwise reject."

The Definition of Algorithm – p.24/31

Implementation details

Consider the graph in Figure 1

� �

�
�

��

�
� �

�

Figure 1: A connected graph

The Definition of Algorithm – p.25/31

Graph encoding,

� The encoding

� �

of a graph as a string is a
list of nodes followed by a list of edges

� Each node is a decimal number, and each
edge is a pair of decimal numbers that
represent the nodes that edge connects

� Example encoding: the graph in Figure 1 is encoded by the
string:

� � � � � �
	

�
	

	
	

 � � � �
	

� �
	

� �
	

	 �
	

� 	
	

� �
	

� �
	

 � �

The Definition of Algorithm – p.26/31

Checking the encoding

When receives the input

� �

it first checks to
determine that the input is a proper encoding of
some graph:

1. Scan the tape to be sure that there are two lists and that they are
in proper form

2. The first list should be a list of distinct decimal numbers; the
second list should be a list of pairs of decimal numbers

3. The list of decimal numbers should contain no repetitions

4. Every node on the second list should appear in the first list too.

Note: element distinctness problem can be used to formate the lists and

to implement the checks above
The Definition of Algorithm – p.27/31

More implementation details

�

To implement stage 1,

�

marks the first node with a dot on the
leftmost digit.

�

To implement stage 2,

�

scan the list of nodes to find an
undotted node � � and flags it by marking it differently, example by
underlining its first digit.

�

Then

�

scans the list again to find a dotted node � � and
underlines it too.

The Definition of Algorithm – p.28/31

Scanning the list of edges

�

For each edge,

�

tests whether the two underlined nodes � � and

� � are the ones appearing in that edge.

�

If they are,

�

dots � � , removes the underlines, and go one from
the beginning of stage 2. If they are not,

�
checks the next edge

on the list.

�

If there are no more edges,

� � � 	 � � �
is not an edge of the graph.

�

Then

�

moves the underline on � � to the next dotted node and
then call this node the node � � .

�

Repeats the steps above to check, as before, whether the pair

��� � 	 � � �

is an edge.

The Definition of Algorithm – p.29/31

Concluding

�

If there are no more dotted nodes, � � is not attached to any dotted
node. Then

�

sets the underlines so that � � is the next undotted
node and � � is the first dotted node

�

Repeats the scanning the list of edges

�

If there are no more undotted nodes,

�

has not been able to find
any new nodes to dot, so it moves to stage 4.

The Definition of Algorithm – p.30/31

Implementing stage 4

�

Scan the list of node to determine whether all are dotted.

�

If all nodes are dotted,

�

enters the accept state

�

If they are not,

�

enter the reject state

The Definition of Algorithm – p.31/31

	An informal discussion
	Algorithm: the concept
	Hilbert's program
	More on Hilbert's 10-th problem
	Observations
	Algorithm: formal definition
	Algorithm: more formal definitions
	Solving Hilbert's problem
	Understanding Matijaseviu {c} work
	A simpler problem
	Analyzing M_1
	A TM that decides D_1
	Matijaseviu {c} theorem
	A turning point
	Standardizing our model
	Answer
	Note
	Our standard
	Encoding objects
	Decoding the input
	Description of a TM
	Example TM
	A TM deciding A
	Implementation details
	Graph encoding, $langle G
angle $
	Checking the encoding
	More implementation details
	Scanning the list of edges
	Concluding
	Implementing stage 4

