Examples of Turing Machines ### Higher level descriptions - We can give a formal description to a particular TM by specifying each of its seven components - This way a TM can become cumbersome. - Note: To avoid this we use higher level descriptions which are precise enough for the purpose of understanding - However, every higher level description is actually just a short hand for its formal counterpart. ### Example 1 ### Describe a TM M_2 that recognizes the language $$A = \{0^{2^n} | n \ge 0\}$$ ### M_2 = "On input string w: - 1. Sweep left to right across the tape crossing off every other 0 - 2. If in stage 1 tape contained a single 0, accept - 3. If in stage 1 tape contained more that a single 0 and the number of 0s was odd, *reject* - 4. Return the head to the left-hand of the tape - 5. Go to stage 1" ## Analysis - At each iteration, stage 1 cuts the number of 0s in half. - If the resulting number of 0s is odd and greater than one, the original number could not have been a power of 2 and machine rejects - If the number of 0 is one than the original number of zeros must have been a power of 2, so machine accepts. Rationale: $$\forall n \in N[(\dots(n/2)/2\dots/2)\dots) = \frac{n}{2^n}]$$ Hence, if $\frac{n}{2^n} = 1$ it means that $n = 2^n$. ### Formal description of M_2 $$M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$$ where: - $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$ - $\Sigma = \{0\}$ - $\Gamma = \{0, x, \sqcup\}$ - δ is described in Figure 1 - The start, accept, reject are q_1 , q_{accept} , q_{reject} respectively ## State diagram of M_2 Figure 1: Mo's state transition diagram of Turing Machines - p.6/22 ### **Notations** - $\delta(q_i,a)=(q_j,b,R)$ is denoted by an arrow that starts at q_i , ends at q_i , and is labeled by $a\to b,R$ - $\delta(q_i,a)=(q_j,b,L)$ is denoted by an arrow that starts at q_i , ends at q_i , and is labeled by $a\to b,L$ - $\delta(q_i, a) = (q_j, a, R)$ is denoted by an arrow that starts at q_i , ends at q_i , and is labeled by $a \to R$ - $\delta(q_i, a) = (q_j, a, L)$ is denoted by an arrow that starts at q_i , ends at q_i , and is labeled by $a \to L$ # Example run ### On input w = 0000: | q_10000 | $\sqcup q_2 000$ | $\sqcup xq_300$ | $\sqcup x0q_40$ | $\Box x0xq_3\Box$ | |---------------------------|-------------------------|---------------------------|-------------------------|---------------------------| | $\sqcup x 0 q_5 x \sqcup$ | $\sqcup xq_50x\sqcup$ | $\sqcup q_5 x 0 x \sqcup$ | $q_5 \sqcup x0x \sqcup$ | $\sqcup q_2 x 0 x \sqcup$ | | $\sqcup xq_20x\sqcup$ | $\sqcup xxq_3x\sqcup$ | $\sqcup xxxq_3 \sqcup$ | $\sqcup xxq_5x\sqcup$ | $\Box xq_5xx\Box$ | | $\sqcup q_5 xxx \sqcup$ | $q_5 \sqcup xxx \sqcup$ | $\sqcup q_2 xxx \sqcup$ | $\sqcup xq_2xx\sqcup$ | $\sqcup xxq_2x\sqcup$ | | $\sqcup xxxq_2\sqcup$ | $\sqcup xxx \sqcup q_a$ | | | | ### **Comments** - The arrow labeled $0 \to \sqcup, R$ in q_1 means $\delta(q_1,0) = (q_2,\sqcup,R)$ i.e., in state q_1 with head reading 0, the machine goes to q_2 , writes \sqcup , and moves to right - The arrow labeled $0 \to R$ in q_3 means $\delta(q_3,0)=(q_4,0,R)$: M_2 moves to the right when reading a 0 without affecting the tape. Note: This machines begins by writing a blank over the leftmost zero. - This allows it to find the left-end of the tape in stage 4 - It also allows M_2 to identify the case when tape contains one zero only, in stage 2 ### Example 2 $M_1=(Q,\Sigma,\Gamma,\delta,q_1,q_a,q_r)$ is the TM that decides the language $B=\{w\#w|w\in\{0,1\}^*\}$ - $Q = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_a, q_r\}$ - $\Sigma = \{0, 1, \#\}, \Gamma = \{0, 1, \#, x, \sqcup\}$ - δ is described in Figure 2 - Start, accept, and reject states are q_1, q_a, q_r , respectively ### High-level description of M_1 #### M_1 = "On input w: - Scan the input tape to be sure that it contains a single #. If not, reject - Zig-zag across the tape to corresponding positions on either side of # to check whether these positions contain the same symbol. If they do not, *reject*. Cross off the symbols as they are checked - 3. When all symbols to the left of # have been crossed off, check for the remaining symbols to the right of #. If any symbol remain, reject, otherwise accept" **Note:** High-level descriptions of TM-s are also called *implementation descriptions*. ## Turing machine M_1 Figure 2: State diagram for TM M_1 ### More notations - Transitions $0, 1 \to R$ in states q_2 and q_3 means that machines moves to the right as long as 0 or 1 is on the tape. - The machine starts by writing a blank symbol to delimit the left-hand edge of the tape - Stage 1 is implemented by states q_1 through q_7 : q_2,q_4,q_6 if the first symbol of input is 0, and q_3,q_5,q_7 if the first input symbol was 1. - To simplify the figure we don't show the reject state or transitions going to reject state. These transitions occur implicitly whenever a state lacks an outgoing transition for a particular symbol. Example, q_5 on # is such a transition Note: using different states for input starting with 1 and 0 allows M_1 to ### Note - The transition diagram in Figure 2 is rather complex. - One can understand better what happens from the high-level description than from Figure 2. - Therefore further we will replace transition diagrams by high-level descriptions, as initially suggested # Example 3 M_3 is a Turing machine that performs some elementary arithmetic. It decides the language $$C = \{a^ib^jc^k|i \times j = k, i, j, k \geq 1\}$$ M_3 ="On input string w - 1. Scan the input from left to right to be sure that it is a member of $a^+b^+c^+$; reject if it is not - 2. Return the head at the left-hand end of the tape - 3. Cross off an *a* and scan to the right until a *b* occurs. Shuttle between the *b*'s and *c*'s crossing off one of each until all *b*'s are gone. If all *c*'s have been crossed of and some *b*'s remain *reject*. - 4. Restores the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's are crossed off, determine whether all c's are crossed off. If yes accept, otherwise reject." Examples of Turing Machines p.15/2 # Analyzing M_3 • In stage 1 M_3 operates as a fi nite automaton; no writing is necessary as the head moves from left to right: 1. $$\delta(q_1, a) = (q_1, a, R), \delta(q_1, b) = (q_2, b, R), \delta(q_1, c) = (q_3, c, R)$$ 2. $$\delta(q_2, b) = (q_2, b, R), \, \delta(q_2, a) = reject, \, \delta(q_2, c) = (q_2, c, R)$$ 3. $$\delta(q_3, c) = (q_3, c, R), \, \delta(q_3, b) = reject, \, \delta(q_3, a) = reject$$ ### Stage 2 finding the left-hand end - Mark the left-hand end by writing a □ before the input (this have been seen before) - Note that if the machine tries to move the head to the left of the left-hand end of the tape the head remains in the same place. This feature can be made "the left-hand end detector" by: - 1. Write a special symbol over the current position, while recording the symbol that it replaced in the control - 2. Attempt to move to the left. If the head is still over the special symbol, the leftward move did not succeed, and the head must have been at the left-hand end. If the head is over a different symbol, some symbols are to the left of that position Examples of Turing Machines p.17/2. on the tene ### Note Stage 3 and stage 4 of M_3 have straightforward implementations ### Element distinctness problem Given a list of strings over $\{0,1\}$ separated by #, determine if all strings are different. A TM that solves this problem accepts the language $$E = \{ \#x_1 \# x_2 \# \dots \# x_k | x_i \in \{0,1\}^*, x_i \neq x_j \text{ for } i \neq j \}$$ # Example 4 $M_4 = (Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)$ is the TM that solves the *element distinctness problem* M_4 works by comparing x_1 with x_2, \ldots, x_k , then by comparing x_2 with x_3, \ldots, x_k , and so on # Informal description ### M_4 ="On input w: - Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that symbol was a # continue with the next stage. Otherwise reject. - 2. Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only x_1 was present, so *accept*. - 3. By zig-zagging, compare the two strings to the right of the marked #-s. If they are equal, *reject* - 4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. If no # is available for the rightmost mark, all Examples of Turing Machines p.21/2. atringa haya haan camparad aa cacat ### Marking tape symbols - In stage two the machine places a mark above a symbol, # in this case. - In the actual implementation the machine has two different symbols, # and # in the tape alphabet Γ - Thus, when machine places a mark above symbol x it actually writes the marked symbol of x at that location - Removing the mark means write the symbol at the location where the marked symbol was.