Turing Machines

Informal discussion

« A Turing machine (TM) is similar to a finite
automaton with an unlimited and unrestricted
memory

« A Turing machine is however a more accurate
model of a general purpose computer

« A Turing machine can do everything that a
real computer can do

Note: even a Turing machine cannot solve certain
classes of problems

Real computer

A real computer is a triple

Computer = (Processor, Memory, [Odevices)
which performs the action:

RunPr ogram :
whi l e (Pl uggedl n and Power On)

Execute (PC);
PC : = Next (PCO);
Implications:
1. Processor = (PC, Instructions)
2. Program is stored in memory as a stream of instructions

3. PC always points to the next instruction to execute

Turing Machines — p.3/3

Informal characterization

e TM memory: Infinite tape

e« TM I/O: a tape-head that can read/write
symbols and move around on the tape

 TM Processor: a control device that performs
transformations of the symbols written on the
tape while moving the head around.

Comments:
1. What are the similarities to a real computer?

2. What are the differences from a real computer?

Turing Machines — p.4/3

Initial condition

e Initially the tape contains only the input string
and Is blank everywhere else

e If TM needs to store info, it may write it on the
tape

* To read the info that it has written, TM can
move Its head back over its tape

e Machine continues computing until it decides
to produce an output

The output

The computation performed by a TM ends up
with an output, which is one of:

accept, reject, or compute forever.

Figure 1 shows the schematic of a TM

A

Control

Head Tape

Figure 1: schematic of a Turing machine

Turing Machines — p.7/3

TM versus FA

1. A TM can both write on the tape and read
from It;
a FA can only read its input

2. The read/write head of a TM can move both
to the left and to the right;
a FA can move In one direction only

3. The tape of a TM Is Infinite;
the Input of a FA Is finite

4. The special states of a TM for rejecting and
accepting the input take immediate effect;

B R " "PU 'S entirely

Example TM computation

Construct a TM M, that tests the membership in
the language B = {w#w|w € {0,1}*}

In other words: we want to design M; such that
Mi(w) = accept, ifw € B

Note: with regard to a real computer this problem becomes:
construct a program that solve the above problem

Hence, a TM is an algorithm (i.e., a program).

Turing Machines — p.9/3

To understand this problem we assume that we
are TMs, I.e., we simulate the actions performed
by TM by ourselves.

« We have an input w € {#,0,1}"

e \We cam examine w consuming it in any
direction, as long as necessary

« \We can write to remember anything we want

Turing Machines — p.10/3

o |dentify first the character # in w

e Zig-zag around # to determine whether or
not the corresponding places on the two sides

of # maitch

* \We can mark the places we have already
visited

Design of M,

M; works following the strategy specified above:

« M7 makes multiple passes over the input with
the read/write head

e On each pass M; matches one of the
characters on each side of # symbol

* To keep track of which symbols have been
checked M; crosses off each symbol as it is
examined

 If M, crosses all symbols it accepts,
otherwise it rejects.

M; ="0n Input w

1. Scan the input tape to be sure that it contains
a single #. If not, reject

2. Zlg-zag across the tape to corresponding

positions on either side of # to check whether
these positions contain the same symbol. If
they do not, reject. Cross off the symbols as
they are checked

3. When all symbols to the left of # have been
crossed off, check for the remaining symbols
to the right of #. If any symbol remain, reject;
otherwise accept."

Turing Machines — p.13/3

[llustration, g

X1 1 000#x11000uU
X X1 000#x11000uU

v
X X X X X X # X X X X X x U

accept

Figure 2. snapshots of M; computing

Turing Machines — p.14/3

Preparing a formal definition

e The control device (the processor) of a TM
can be In a finite set of states. We denote this
set by Q

 The tape (i.e. the memory) of a TM is split
Into an infinite number of locations called
sguares or cells. Each square can hold a
symbol of a given alphabet, I'

 The tape-head can move to the right (R) or to
the left (L) one square at each step of the
computation performed by the TM.

BRI 1 Which a TM operates come

Transitions

e The heart of a formal definition of a TM Is the
transition function d because it tells how Is the
machine going from one step to the next.

e The signature of J Is:
§:QxI'—=QxTIx{L,R}
e In other words: when TM s in a state g € (Q and the head

IS over a tape square containing a symbola € I'

if 6(¢q,a) = (r, b, L) the machine replaces a with b, moves to the
state » and moves the head to the left (L)

If 9(q,a) = (r, b, R) the machine replaces a with b, moves to
the state » and moves the head to the right (R)

Turing Machines — p.16/3

Formal definition

A Turing machine is a 7-tuple

M — (Q, 27 F) 57 qo, Qaccepta Q’I“ejGCt)

where @, >, I' are finite sets and

() 1s a set of states

Y. Is the input alphabet and blank LI ¢ X2

I' is the tape alphabet, U eI, X C T

0:Q xI' > @ xT x{L, R} is the transition function

go € @ Is the initial state

S A

daccept € @ 1S the accept state (sometimes denoted g,)

: ' ' tate (sometimes denoted g;.)
Turing Machines — p.17/3

Other definitions

Hopcroft and Ullman 1979:

A Turing machine M is a 7-tuple
M= (Q,%,T,q,0, B, F) where:
1. () is a set of states,
2. T'is a fi nite set of allowable tape symbols,
3. B s asymbol from I' called blank,
4, Y cT,B¢x,
)

L 0:QxI' > Q xT x{L,R} (6 may be undefi ned on some
arguments),

6. go € () Is the start state,

7. F C (is the set of fi nal states.

Turing Machines — p.18/3

Different notation

Fleck 2001:

A Turing machine M is a 7-tuple
M = (S,%,T,sp,6,B, R) where
1. S is the set of states,

2. sg € S Is the start state,

3. R C S is the set of recognizing or accepting states.

The other components of M are as in Hopcroft and Uliman

Turing Machines — p.19/3

TM as a quintuple

Lewis and Papadimitriou (1981) and Kimber and Smith,
(2001)

A Turing machine M is a 5-tuple
M = (S,%,0,s, H) where:
1. S is a set of states,

2. X Is an alphabet containing > (left marker) and U (blank), but
—,—>EZ X,

3. s € S is the initial state,
4. H C S is the set of halting states, and

5. 6:(S\H) xX — 8§ x (XU{«+,—}), the transition functions, is
such that:

Computations

M = (Qa 2, I 57 40, Qaccept s QTeject) computes as
follows:

® M receives as input w = wiws ... w, € X* written on the leftmost
squares of the tape; the rest of the tape is blank (i.e., fi lled with L)

® The head starts on the leftmost square of the tape
® The first blank encountered shows the end of the input
® Once it starts, it proceeds by the rules describing §

® |f M ever tries to move to the left of the leftmost square the head
stays in the leftmost square even though ¢ indicate L

® Computation continues until M enters quccepts Greject at Which
points it halts. If neither occurs M goes on forever

Turing Machines — p.21/3

A configuration C' of M Is a tuple
C = (q € Q,tapeContents, headLocation)

e Configurations are used to formalize machine
computation and are represented by special
symbols

e Forge @, u,v € I'*, u q v, also denoted
C' = (u,q,v), represents the configuration
where current state Is g, tape contains uv,
and head is on the first symbol of v.

e Notation: C' = uqu

B o i g e last symbol of v, ooz

Example configurations

Consider again the Figure 3 representing a snapshot of TM M,
recognizing the language L = {z|x = w#w,w € {0,1}*}.

—y

011000#011000U

Xx11000#011000U

X 1 100O0# x11000U

X 11000# x 11000 U

X X 1 00 0# x 1100 0 U

Y
X X X X X X # X X X X X X U

accept

BEGEEIE opshots of M, computing e om0

Configurations of M;

The following are confi gurations from from M;’s computations.
* Infirstline C = (e, ¢,0110004011000)
® In second line C' = (x, g2, 11000#011000)
® |n third line C' = (£11000#, ¢3, 211000)
® Infourth line C = (¢, g4, 211000#4211000)
® Infifthline C' = (z, ¢, x000#221100)

® In sixth line C = (zxxxrrx#Hrrrrxzrr,qll)

where e denotes the empty word in X* and x denotes a crossed symbol.

Turing Machines — p.24/3

Formalizing TM computation

« A configuration 'y yields a configuration Cs If

the TM can legally go from C; to Cs In a
single step

e Formally: suppose a,b,c € I', u,v € I'* and

Gi, g5 € Q.

1. We say that ua g; bv yields uac g; v If
6(gi,b) = (g;, ¢, R); (machine moves
rightward)

2. We say that ua ¢; bv yields u g; acv If
6(gi,b) = (g;, ¢, L); (machine moves

Iﬁftwirﬁ ‘

Head at one input end

e For the left-hand end, I.e.u = «:

® the confi guration g bv yields g¢; cv If the transition is left
moving, i.e., 6(qi,b) = (g, ¢, L)

® the confi guration g bv yields c g; v for the right moving
transition, i.e., 6(¢;, b) = (g;, ¢, R)

e For the right-hand end, i.e., v = €:

® the confi guration ua g IS equivalent to ua g;L1 because we
assume that blanks follow the part of the tape represented in
confi guration. Hence we can handle this case as the previous

Turing Machines — p.26/3

Special configurations

e If the Input of M Is w and initial state is g, then
qo w 1S the start configuration

* Ua Gucceptbv 1S Called the accepting
configuration

* ua Grejectbv 1S Called the rejecting configuration

Note: accepting and rejecting configurations are
also called halting configurations

Accepting an input w

A Turing machine M accepts the input w If a
sequence of configurations C;, Cs, ...,), exists
such that:

1. (1 is the start configuration, C; = (e, ¢, w)

2. Each C; yields C;,; denoted C; - C;41,
i=1,2... n—1

3. C,, IS an accepting configuration

Note: The sequence C7 - Cy F ... F C} Is al-
though denoted by C; = (.

anguage of M

The language recognized by a Turing machine
M = (Q,%,T,6,q, qa> q)
is denoted by L(M) and is defined by
L(M) =A{w € X¥gw [~ ugqv}

That is, L(M) is the set of strings w € >*
accepted by M.

Note: The language L (M) recognized by a Turing
machine M is also called the language of M.

Turing-recognizable language

A language L is Turing-recognizable if there Is
a Turing machine M that recognizes it

When we start a TM on an input w three cases
can happen:

1. TM may accept w
2. TM may reject w

3. TM may loop indefinitely, i.e., TM does not
halt.

Note: looping does not mean that machine repeats the same steps over
and over again; looping may entail any simple or complex behavior that
never leads to a halting state.

Question: Is this real? l.e., can you indicate a computation that takes

Fail to accept

c ATM M = (Q,%,T, 9, q, q4, q) fails to accept
w € X* by:

1. gow = ugyv, i.e., entering g,¢;et, and thus rejecting

® When M is looping, that is gy = %mqmvm = - .. 0ne cannot say if
M accepts or rejects because we don’t know if M will ever enter a

qm fOr gn, € {qa, qr}-

Turing Machines — p.32/3

Fail to reject

c ATM M = (Q,>,T,9,qo, q4, q) fails to rejects
w € X* by:

1. gow |= ug,rv, i.e., entering gaccept, and thus accepting

® When M is looping, that is gy = %mqmvm = - .. 0ne cannot say if
M accepts or rejects because we don’t know if M will ever enter a

qm fOr gn, € {qa, qr}-

Turing Machines — p.33/3

Sometimes it is difficult to distinguish a machine
that fail to reject from one that merely takes long-
time to halt.

A TM that halts on all inputs Is called a decider.

Note: a decider always halts, accepting or reject-
INng Its Input.

Turing-decidability

e A decider that recognizes some language Is
also said to decide that language

e A language is called Turing-decidable or
simple decidable if some TM decides It.

e Every decidable language is
Turing-recognizable

Remember: a language Is Turing-recognizable
If it Is recognized by a TM M, I.e Vw € X*:

M accepts w or M rejects w or M is looping
on w.

e Certain Turing-recognizable languages are
not decidable

Remember: t0 be decidable means to be
decided by a TM which halts on all inputs, 1.e.,

	Informal discussion
	Real computer
	Informal characterization
	Initial condition
	The output
	Graphic
	TM versus FA
	Example TM computation
	Note
	Strategy
	Design of M_1
	M_1 = "On input w
	Illustration, {scriptsize Fig~
ef {Ilust1}}
	Preparing a formal definition
	Transitions
	Formal definition
	Other definitions
	Different notation
	TM as a quintuple
	Computations
	Configuration
	Example configurations
	Configurations of M_1
	Formalizing TM computation
	Head at one input end
	Special configurations
	Accepting an input w
	Language of M
	Turing-recognizable language
	Note
	Fail to accept
	Fail to reject
	Note
	Decider
	Turing-decidability
	Note

