
Turing Machines

Turing Machines – p.1/37

Informal discussion

� A Turing machine (TM) is similar to a finite
automaton with an unlimited and unrestricted
memory

� A Turing machine is however a more accurate
model of a general purpose computer

� A Turing machine can do everything that a
real computer can do

Note: even a Turing machine cannot solve certain

classes of problems

Turing Machines – p.2/37

Real computer

A real computer is a triple

� �� � ���� � 	 � �
 �� � �� � � � ��
 � � ��� �
 �� �

which performs the action:

RunProgram::

while (PluggedIn and PowerOn)

Execute (PC);

PC := Next (PC);

Implications:

1. Processor = (PC, Instructions)

2. Program is stored in memory as a stream of instructions

3. PC always points to the next instruction to execute

Turing Machines – p.3/37

Informal characterization

� TM memory: infinite tape

� TM I/O: a tape-head that can read/write
symbols and move around on the tape

� TM Processor: a control device that performs
transformations of the symbols written on the
tape while moving the head around.

Comments:

1. What are the similarities to a real computer?

2. What are the differences from a real computer?

Turing Machines – p.4/37

Initial condition

� Initially the tape contains only the input string
and is blank everywhere else

� If TM needs to store info, it may write it on the
tape

� To read the info that it has written, TM can
move its head back over its tape

� Machine continues computing until it decides
to produce an output

Turing Machines – p.5/37

The output

The computation performed by a TM ends up
with an output, which is one of:

accept, reject, or compute forever.

Turing Machines – p.6/37

Graphic

Figure 1 shows the schematic of a TM

Control �

�

Head
Tape

a b a b

� � � � � �

R/W

Figure 1: Schematic of a Turing machine

Turing Machines – p.7/37

TM versus FA

1. A TM can both write on the tape and read
from it;
a FA can only read its input

2. The read/write head of a TM can move both
to the left and to the right;
a FA can move in one direction only

3. The tape of a TM is infinite;
the input of a FA is finite

4. The special states of a TM for rejecting and
accepting the input take immediate effect;
FA terminates when input is entirely
consumed

Turing Machines – p.8/37

Example TM computation

Construct a TM � that tests the membership in
the language � � � � � � � ��� � � �	 �

In other words: we want to design � such that

�
 � � � �

 � � �

, if � �

Note: with regard to a real computer this problem becomes:
construct a program that solve the above problem

Hence, a TM is an algorithm (i.e., a program).

Turing Machines – p.9/37

Note

To understand this problem we assume that we
are TMs, i.e., we simulate the actions performed
by TM by ourselves.

� We have an input � � � � � � � � 	

� We cam examine � consuming it in any
direction, as long as necessary

� We can write to remember anything we want

Turing Machines – p.10/37

Strategy

� Identify first the character in �

� Zig-zag around to determine whether or
not the corresponding places on the two sides
of match

� We can mark the places we have already
visited

Turing Machines – p.11/37

Design of �

� works following the strategy specified above:

� � makes multiple passes over the input with
the read/write head

� On each pass � matches one of the
characters on each side of symbol

� To keep track of which symbols have been
checked � crosses off each symbol as it is
examined

� If � crosses all symbols it accepts,
otherwise it rejects.

Turing Machines – p.12/37

� = "On input

1. Scan the input tape to be sure that it contains
a single . If not, reject

2. Zig-zag across the tape to corresponding
positions on either side of to check whether
these positions contain the same symbol. If
they do not, reject. Cross off the symbols as
they are checked

3. When all symbols to the left of have been
crossed off, check for the remaining symbols
to the right of . If any symbol remain, reject;
otherwise accept."

Turing Machines – p.13/37

Illustration, Fig 2

accept
x x x x x x

�

x x x x x x

� � � �

�

x x 1 0 0 0
�

x 1 1 0 0 0

� � � �

�

x 1 1 0 0 0

�

x 1 1 0 0 0

� � � �

�

x 1 1 0 0 0

�

x 1 1 0 0 0

� � � �

�

x 1 1 0 0 0

�

0 1 1 0 0 0

� � � �

�

0 1 1 0 0 0

�

0 1 1 0 0 0
� � � �

�
Figure 2: Snapshots of

��� computing

Turing Machines – p.14/37

Preparing a formal definition

� The control device (the processor) of a TM
can be in a finite set of states. We denote this
set by Q

� The tape (i.e. the memory) of a TM is split
into an infinite number of locations called
squares or cells. Each square can hold a
symbol of a given alphabet,

�

� The tape-head can move to the right (R) or to
the left (L) one square at each step of the
computation performed by the TM.

Note: the input data on which a TM operates come

from an input alphabet .

Turing Machines – p.15/37

Transitions

� The heart of a formal definition of a TM is the
transition function

�

because it tells how is the
machine going from one step to the next.

� The signature of

�

is:

��� � � � � � � � � �

� In other words: when TM is in a state � � �

and the head
is over a tape square containing a symbol � � 	

if

 � �
� � � � ��� �
�
�

� �
the machine replaces � with

�

, moves to the
state � and moves the head to the left (L)

if

 � �� � � � �� �
�
�

� �

the machine replaces � with

�

, moves to
the state � and moves the head to the right (R)

Turing Machines – p.16/37

Formal definition

A Turing machine is a 7-tuple

�
 � � � � � � ��� � � �� � �� � � �� � � �� �
�

where � � �

are finite sets and
1.

�

is a set of states

2.

�

is the input alphabet and blank

	
� �

3.

	

is the tape alphabet,
	 � 	
�

� � 	

4.

� � � 	 � � � 	 � � �
�

� �

is the transition function

5. ��� � �

is the initial state

6. �
�� � �� � � �
is the accept state (sometimes denoted � �)

7. �
� � � �� � � �
is the reject state (sometimes denoted � �)

Turing Machines – p.17/37

Other definitions

Hopcroft and Ullman 1979:

A Turing machine is a 7-tuple

�
 � � � � �� � � � � �

where:
1.

�

is a set of states,

2.

	

is a finite set of allowable tape symbols,

3.

�

is a symbol from

	

called blank,

4.

� � 	

,

�
� �

,

5.

� � � 	 � � � 	 � � �
�

� �

(

may be undefined on some
arguments),

6. �� � �

is the start state,

7.

� � �

is the set of final states.
Turing Machines – p.18/37

Different notation

Fleck 2001:

A Turing machine is a 7-tuple

�
 � � � � �� � � � � � �

where
1.

�

is the set of states,

2. � � � �

is the start state,

3.

� � �

is the set of recognizing or accepting states.

The other components of
�

are as in Hopcroft and Ullman

Turing Machines – p.19/37

TM as a quintuple

Lewis and Papadimitriou (1981) and Kimber and Smith,
(2001)

A Turing machine is a 5-tuple

�
 � � � � �� � �

where:
1.

�

is a set of states,

2.

�

is an alphabet containing � (left marker) and

	

(blank), but

� � �
� �

,

3. � � �

is the initial state,

4.

� � �

is the set of halting states, and

5.

� � � � � � � � � � � � �� � � � � � �

, the transition functions, is
such that:

� � � � � � �
�

 � �
� � � � � � � � � for some � � �

;

�

If
� � �
� � �
 � �� � � for some � � �

, � � �

then

�
 � �

Turing Machines – p.20/37

Computations

�
 � � � � � � �� � � � � � �� � � �� � � �� �
�

computes as
follows:

� �

receives as input � � � � ��� � � � ��� � � �
written on the leftmost

squares of the tape; the rest of the tape is blank (i.e., filled with

	

)

�

The head starts on the leftmost square of the tape

�

The first blank encountered shows the end of the input

�

Once it starts, it proceeds by the rules describing

�

If

�

ever tries to move to the left of the leftmost square the head
stays in the leftmost square even though

indicate

�

�

Computation continues until

�

enters � �� � �� �, � � � � �� � at which
points it halts. If neither occurs

�

goes on forever

Turing Machines – p.21/37

Configuration

A configuration of is a tuple

�
 � � � � �� � � � ��� � �� � �� � � � �
 � � � � �
�

� Configurations are used to formalize machine
computation and are represented by special
symbols

� For � � , � �� � �	
, � �� , also denoted

�
 � � � �� �

, represents the configuration
where current state is �, tape contains �� ,
and head is on the first symbol of� .

� Notation: � � ��

Note: tape contains only

	

following the last symbol of �. Turing Machines – p.22/37

Example configurations

Consider again the Figure 3 representing a snapshot of TM

� �

recognizing the language

� � ��� � � � � � � � � � � �
�

� � � �

.

accept
x x x x x x

�

x x x x x x

� � � �

�

x x 1 0 0 0

�

x 1 1 0 0 0

� � � �

�

x 1 1 0 0 0

�

x 1 1 0 0 0

� � � �

�

x 1 1 0 0 0
�

x 1 1 0 0 0

� � � �

�

x 1 1 0 0 0

�

0 1 1 0 0 0

� � � �

�

0 1 1 0 0 0

�

0 1 1 0 0 0

� � � �

�

Figure 3: Snapshots of

��� computing Turing Machines – p.23/37

Configurations of �

The following are configurations from from

�� ’s computations.

�

In first line

� � ��� � �� �
� � � � � � � � � � � � � �

�

In second line

� � �� � �� �
� � � � � � � � � � � � �

�

In third line

� � �� � � � � � �
� ��� � �

� � � � � �

�

In fourth line

� � ��� � ��� � �
� � � � � �� � � � � � �

�

In fifth line

� � �� � ��� � �
� � � �� � � � � � �

�

In sixth line

� � �� � � � � � � �� � � � � � � � � 	 �

where � denotes the empty word in

� �

and � denotes a crossed symbol.

Turing Machines – p.24/37

Formalizing TM computation

� A configuration � yields a configuration � if
the TM can legally go from � to � in a
single step

� Formally: suppose � � � �
 � �
, � �� � �	

and

��� � � � � .
1. We say that � � � �

�� yields � �
 � �� if

�
 ��� � � � �
 � � �
 � �
; (machine moves

rightward)
2. We say that � � � �

�� yields � � � �
� if

�
 ��� � � � �
 � � �
 � � �

; (machine moves
leftward)

Turing Machines – p.25/37

Head at one input end

� For the left-hand end, i.e. � � �:

�

the configuration ��� � � yields � � � � if the transition is left
moving, i.e.,

 � � � �
� � � � � � � � �
� �

�

the configuration ��� � � yields � � � � for the right moving
transition, i.e.,

 � � � �
� � � � � � � � �
� �

� For the right-hand end, i.e.,� � �:

�

the configuration � � ��� is equivalent to � � � � 	

because we
assume that blanks follow the part of the tape represented in
configuration. Hence we can handle this case as the previous

Turing Machines – p.26/37

Special configurations

� If the input of is � and initial state is � � then

��� � is the start configuration

� � � � �� � �� �
�� is called the accepting

configuration

� � � �� � � �� �
�� is called the rejecting configuration

Note: accepting and rejecting configurations are

also called halting configurations

Turing Machines – p.27/37

Accepting an input

A Turing machine accepts the input � if a
sequence of configurations � � � �� � � � � exists
such that:

1. � is the start configuration, � �

� � �� � � �

2. Each � yields � � � denoted �

�

� � � ,� � � � � �� � � � � �
�

3. � is an accepting configuration

Note: The sequence � �

�

�
� � �

�

� is al-

though denoted by � � � �.
Turing Machines – p.28/37

Language of

The language recognized by a Turing machine

�
 � � � � � � ��� � � � � ��
�

is denoted by

�
 �

and is defined by

�
 � � � � � 	 � �� � � � � � �� �

That is,

�
 �

is the set of strings � � 	

accepted by .

Note: The language

�
 �

recognized by a Turing

machine is also called the language of .
Turing Machines – p.29/37

Turing-recognizable language

A language

�

is Turing-recognizable if there is

a Turing machine that recognizes it

Turing Machines – p.30/37

Note

When we start a TM on an input � three cases
can happen:

1. TM may accept �

2. TM may reject �

3. TM may loop indefinitely, i.e., TM does not
halt.

Note: looping does not mean that machine repeats the same steps over
and over again; looping may entail any simple or complex behavior that
never leads to a halting state.

Question: is this real? I.e., can you indicate a computation that takes

infinite many steps without repetition?
Turing Machines – p.31/37

Fail to accept

� A TM �
 � � � � � � �� � � � � ��
�

fails to accept

� � 	

by:
1. �� � � � � �� �, i.e., entering � � � � �� �, and thus rejecting

�

When

�

is looping, that is � � � � ��� �� �� � � � � � one cannot say if

�

accepts or rejects because we don’t know if

�

will ever enter a

�� for �� � � �
� � � �
�

.

Turing Machines – p.32/37

Fail to reject

� A TM �
 � � � � � � �� � � � � ��
�

fails to rejects

� � 	

by:
1. �� � � � � �� � �, i.e., entering � �� � �� �, and thus accepting

�

When

�

is looping, that is � � � � ��� �� �� � � � � � one cannot say if

�

accepts or rejects because we don’t know if

�

will ever enter a

�� for �� � � �
� � � �
�

.

Turing Machines – p.33/37

Note

Sometimes it is difficult to distinguish a machine

that fail to reject from one that merely takes long-

time to halt.

Turing Machines – p.34/37

Decider

A TM that halts on all inputs is called a decider.

Note: a decider always halts, accepting or reject-

ing its input.

Turing Machines – p.35/37

Turing-decidability

� A decider that recognizes some language is
also said to decide that language

� A language is called Turing-decidable or
simple decidable if some TM decides it.

Turing Machines – p.36/37

Note

� Every decidable language is
Turing-recognizable

Remember: a language is Turing-recognizable
if it is recognized by a TM , i.e

� � � 	

:
accepts � or rejects � or is looping

on �.

� Certain Turing-recognizable languages are
not decidable

Remember: to be decidable means to be
decided by a TM which halts on all inputs, i.e.,

� � � 	
: accepts � or rejects �.

Turing Machines – p.37/37

	Informal discussion
	Real computer
	Informal characterization
	Initial condition
	The output
	Graphic
	TM versus FA
	Example TM computation
	Note
	Strategy
	Design of M_1
	M_1 = "On input w
	Illustration, {scriptsize Fig~
ef {Ilust1}}
	Preparing a formal definition
	Transitions
	Formal definition
	Other definitions
	Different notation
	TM as a quintuple
	Computations
	Configuration
	Example configurations
	Configurations of M_1
	Formalizing TM computation
	Head at one input end
	Special configurations
	Accepting an input w
	Language of M
	Turing-recognizable language
	Note
	Fail to accept
	Fail to reject
	Note
	Decider
	Turing-decidability
	Note

