Turing Machines
Informal discussion

- A Turing machine (TM) is similar to a finite automaton with an unlimited and unrestricted memory.
- A Turing machine is however a more accurate model of a general purpose computer.
- A Turing machine can do everything that a real computer can do.

Note: even a Turing machine cannot solve certain classes of problems.
A real computer is a triple
\[\text{Computer} = \langle \text{Processor}, \text{Memory}, \text{IOdevices} \rangle \]
which performs the action:

\[
\text{RunProgram::}
\]
\[
\text{while (PluggedIn and PowerOn)}
\]
\[
\text{ Execute (PC);} \\
\text{ PC := Next (PC);} \\
\]

Implications:

1. Processor = (PC, Instructions)
2. Program is stored in memory as a stream of instructions
3. PC always points to the next instruction to execute
Informal characterization

- **TM memory**: infinite tape
- **TM I/O**: a tape-head that can read/write symbols and move around on the tape
- **TM Processor**: a control device that performs transformations of the symbols written on the tape while moving the head around.

Comments:

1. What are the similarities to a real computer?
2. What are the differences from a real computer?
Initial condition

- Initially the tape contains only the input string and is blank everywhere else
- If TM needs to store info, it may write it on the tape
- To read the info that it has written, TM can move its head back over its tape
- Machine continues computing until it decides to produce an output
The output

The computation performed by a TM ends up with an output, which is one of:

accept, *reject*, or *compute forever*.
Figure 1 shows the schematic of a TM

Figure 1: Schematic of a Turing machine
TM versus FA

1. A TM can both write on the tape and read from it;
 a FA can only read its input

2. The read/write head of a TM can move both to the left and to the right;
 a FA can move in one direction only

3. The tape of a TM is infinite;
 the input of a FA is finite

4. The special states of a TM for rejecting and accepting the input take immediate effect;
 FA terminates when input is entirely consumed
Example TM computation

Construct a TM M_1 that tests the membership in the language $B = \{ w \# w \mid w \in \{0, 1\}^* \}$

In other words: we want to design M_1 such that $M_1(w) = \text{accept}$, if $w \in B$

Note: with regard to a real computer this problem becomes:
construct a program that solve the above problem

Hence, a TM is an algorithm (i.e., a program).
To understand this problem we assume that we are TMs, i.e., we simulate the actions performed by TM by ourselves.

- We have an input \(w \in \{\#, 0, 1\}^* \)
- We can examine \(w \) consuming it in any direction, as long as necessary
- We can write to remember anything we want
Strategy

- Identify first the character # in w
- Zig-zag around # to determine whether or not the corresponding places on the two sides of # match
- We can mark the places we have already visited
Design of M_1

M_1 works following the strategy specified above:

- M_1 makes multiple passes over the input with the read/write head
- On each pass M_1 matches one of the characters on each side of $\#$ symbol
- To keep track of which symbols have been checked M_1 crosses off each symbol as it is examined
- If M_1 crosses all symbols it accepts, otherwise it rejects.
\(M_1 = \text{"On input } w \text{"} \)

1. Scan the input tape to be sure that it contains a single \#_. If not, \textit{reject}

2. Zig-zag across the tape to corresponding positions on either side of \#_ to check whether these positions contain the same symbol. If they do not, \textit{reject}. Cross off the symbols as they are checked

3. When all symbols to the left of \#_ have been crossed off, check for the remaining symbols to the right of \#_. If any symbol remain, \textit{reject}; otherwise \textit{accept}.

\[T_{	ext{uring Machines}} \] – p.13/37
Figure 2: Snapshots of M_1 computing

Illustration, Fig 2
Preparing a formal definition

- The control device (the processor) of a TM can be in a finite set of states. We denote this set by \(Q \).

- The tape (i.e. the memory) of a TM is split into an infinite number of locations called squares or cells. Each square can hold a symbol of a given alphabet, \(\Gamma \).

- The tape-head can move to the right (R) or to the left (L) one square at each step of the computation performed by the TM.

Note: the input data on which a TM operates come from an input alphabet.
The heart of a formal definition of a TM is the transition function δ because it tells how is the machine going from one step to the next.

The signature of δ is:

$$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

In other words: when TM is in a state $q \in Q$ and the head is over a tape square containing a symbol $a \in \Gamma$

- if $\delta(q, a) = (r, b, L)$ the machine replaces a with b, moves to the state r and moves the head to the left (L)
- if $\delta(q, a) = (r, b, R)$ the machine replaces a with b, moves to the state r and moves the head to the right (R)
Formal definition

A Turing machine is a 7-tuple

\[M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}) \]

where \(Q, \Sigma, \Gamma \) are finite sets and

1. \(Q \) is a set of states
2. \(\Sigma \) is the input alphabet and blank \(\square \notin \Sigma \)
3. \(\Gamma \) is the tape alphabet, \(\square \in \Gamma, \Sigma \subset \Gamma \)
4. \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \) is the transition function
5. \(q_0 \in Q \) is the initial state
6. \(q_{accept} \in Q \) is the accept state (sometimes denoted \(q_a \))
7. \(q_{reject} \in Q \) is the reject state (sometimes denoted \(q_r \))
Other definitions

Hopcroft and Ullman 1979:

A Turing machine M is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, \delta, B, F)$ where:

1. Q is a set of states,
2. Γ is a finite set of allowable tape symbols,
3. B is a symbol from Γ called blank,
4. $\Sigma \subset \Gamma$, $B \notin \Sigma$,
5. $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ (δ may be undefined on some arguments),
6. $q_0 \in Q$ is the start state,
7. $F \subseteq Q$ is the set of final states.
Different notation

Fleck 2001:

A Turing machine \(M \) is a 7-tuple
\[
M = (S, \Sigma, \Gamma, s_0, \delta, B, R)
\]
where

1. \(S \) is the set of states,
2. \(s_0 \in S \) is the start state,
3. \(R \subseteq S \) is the set of recognizing or accepting states.

The other components of \(M \) are as in Hopcroft and Ullman.
TM as a quintuple

A Turing machine M is a 5-tuple $M = (S, \Sigma, \delta, s, H)$ where:

1. S is a set of states,
2. Σ is an alphabet containing \triangleright (left marker) and \Box (blank), but $\leftarrow, \rightarrow \notin \Sigma$,
3. $s \in S$ is the initial state,
4. $H \subseteq S$ is the set of halting states, and
5. $\delta : (S \setminus H) \times \Sigma \rightarrow S \times (\Sigma \cup \{\leftarrow, \rightarrow\})$, the transition functions, is such that:
 - $\forall q \in S \setminus H, \delta(q, \triangleright) = (p, \rightarrow)$ for some $p \in S$;
 - If $(p, b) = \delta(q, a)$ for some $q \in S$, $a \in \Sigma$ then $b \neq \triangleright$.
Computations

\[M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \] computes as follows:

- \(M \) receives as input \(w = w_1 w_2 \ldots w_n \in \Sigma^* \) written on the leftmost squares of the tape; the rest of the tape is blank (i.e., filled with \(\sqcup \))
- The head starts on the leftmost square of the tape
- The first blank encountered shows the end of the input
- Once it starts, it proceeds by the rules describing \(\delta \)
- If \(M \) ever tries to move to the left of the leftmost square the head stays in the leftmost square even though \(\delta \) indicate \(L \)
- Computation continues until \(M \) enters \(q_{\text{accept}}, q_{\text{reject}} \) at which points it halts. If neither occurs \(M \) goes on forever
A configuration \(C \) of \(M \) is a tuple
\[
C = (q \in Q, \text{tapeContents}, \text{headLocation})
\]

- Configurations are used to formalize machine computation and are represented by special symbols
- For \(q \in Q, u, v \in \Gamma^* \), also denoted \(C = (u, q, v) \), represents the configuration where current state is \(q \), tape contains \(uv \), and head is on the first symbol of \(v \).

- Notation: \(C = uqv \)

Note: tape contains only \(\square \) following the last symbol of \(v \).
Example configurations

Consider again the Figure 3 representing a snapshot of TM M_1 recognizing the language $L = \{x|x = w\#w, w \in \{0, 1\}^*\}$.

Figure 3: Snapshots of M_1 computing
Configurations of M_1

The following are configurations from M_1's computations.

- In first line $C = (\epsilon, q_0, 011000\#011000)$
- In second line $C = (x, q_2, 11000\#011000)$
- In third line $C = (x11000\#, q_3, x11000)$
- In fourth line $C = (\epsilon, q_4, x11000\#x11000)$
- In fifth line $C = (x, q_5, x000\#xx1100)$
- In sixth line $C = (xxxxxxx\#xxxxxxx, q\square)$

where ϵ denotes the empty word in Σ^* and x denotes a crossed symbol.
Formalizing TM computation

- A configuration \(C_1 \) yields a configuration \(C_2 \) if the TM can legally go from \(C_1 \) to \(C_2 \) in a single step.

- Formally: suppose \(a, b, c \in \Gamma, u, v \in \Gamma^* \) and \(q_i, q_j \in Q \).
 1. We say that \(ua q_i bv \) yields \(uac q_j v \) if \(\delta(q_i, b) = (q_j, c, R) \); (machine moves rightward)
 2. We say that \(ua q_i bv \) yields \(u q_j acv \) if \(\delta(q_i, b) = (q_j, c, L) \); (machine moves leftward)
Head at one input end

- For the left-hand end, i.e. $u = \epsilon$:
 - the configuration $q \, b \, v$ yields $q_j \, c \, v$ if the transition is left moving, i.e., $\delta(q_i, b) = (q_j, c, L)$
 - the configuration $q \, b \, v$ yields $c \, q_j \, v$ for the right moving transition, i.e., $\delta(q_i, b) = (q_j, c, R)$

- For the right-hand end, i.e., $v = \epsilon$:
 - the configuration $u \, a \, q$ is equivalent to $u \, a \, q_i \downarrow$ because we assume that blanks follow the part of the tape represented in configuration. Hence we can handle this case as the previous
Special configurations

- If the input of M is w and initial state is q_0 then $q_0 w$ is the start configuration
- $ua q_{accept} bv$ is called the accepting configuration
- $ua q_{reject} bv$ is called the rejecting configuration

Note: accepting and rejecting configurations are also called halting configurations
Accepting an input w

A Turing machine M accepts the input w if a sequence of configurations C_1, C_2, \ldots, C_n exists such that:

1. C_1 is the start configuration, $C_1 = (\epsilon, q_0, w)$
2. Each C_i yields C_{i+1} denoted $C_i \vdash C_{i+1}$, $i = 1, 2, \ldots, n - 1$
3. C_n is an accepting configuration

Note: The sequence $C_1 \vdash C_2 \vdash \ldots \vdash C_k$ is although denoted by $C_1 \models C_k$.
Language of M

The language recognized by a Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$$

is denoted by $L(M)$ and is defined by

$$L(M) = \{ w \in \Sigma^* | q_0w \vdash uq_a v \}$$

That is, $L(M)$ is the set of strings $w \in \Sigma^*$ accepted by M.

Note: The language $L(M)$ recognized by a Turing machine M is also called the language of M.
Turing-recognizable language

A language L is Turing-recognizable if there is a Turing machine M that recognizes it.
Note

When we start a TM on an input w three cases can happen:

1. TM may accept w
2. TM may reject w
3. TM may loop indefinitely, i.e., TM does not halt.

Note: looping does not mean that machine repeats the same steps over and over again; looping may entail any simple or complex behavior that never leads to a halting state.

Question: is this real? I.e., can you indicate a computation that takes infinite many steps without repetition?
A TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ fails to accept $w \in \Sigma^*$ by:

1. $q_0w \vdash uq_rv$, i.e., entering q_{reject}, and thus rejecting

When M is looping, that is $q_0 \vdash u_m q_m v_m \vdash \ldots$ one cannot say if M accepts or rejects because we don’t know if M will ever enter a q_m for $q_m \in \{q_a, q_r\}$.
Fail to reject

- A TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ fails to rejects $w \in \Sigma^*$ by:
 1. $q_0w \vdash uq_arv$, i.e., entering q_{accept}, and thus accepting

- When M is looping, that is $q_0 \vdash u_mq_mv_m \vdash \ldots$ one cannot say if M accepts or rejects because we don’t know if M will ever enter a q_m for $q_m \in \{q_a, q_r\}$.
Note

Sometimes it is difficult to distinguish a machine that fail to reject from one that merely takes long-time to halt.
A TM that halts on all inputs is called a decider.

Note: a decider always halts, accepting or rejecting its input.
Turing-decidability

• A decider that recognizes some language is also said to *decide* that language

• A language is called *Turing-decidable* or simple *decidable* if some TM decides it.
Note

• Every decidable language is Turing-recognizable

Remember: a language is Turing-recognizable if it is recognized by a TM M, i.e. $\forall w \in \Sigma^*: M$ accepts w or M rejects w or M is looping on w.

• Certain Turing-recognizable languages are not decidable

Remember: to be decidable means to be decided by a TM which halts on all inputs, i.e., $\forall w \in \Sigma^*: M$ accepts w or M rejects w.

Turing Machines – p.37/37