Second Part of Regular Expressions Equivalence with Finite Automata
Lemma 1.60

If a language is regular then it is specified by a RE
Lemma 1.60

If a language is regular then it is specified by a RE

Proof idea: For a given regular language A we will construct a regular expression (RE) that specifies A.
Procedure

- Since A is regular, there is a DFA D_A recognizing A
Procedure

- Since A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A
Procedure

- Since A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A

This procedure is broken in two parts:
Procedure

- Since A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A

This procedure is broken in two parts:

1. Convert the DFA into a generalized NFA, GNFA
Procedure

- **Since** A is regular, there is a DFA D_A recognizing A
- D_A will be converted into a RE R_A that specifies A

This procedure is broken in two parts:
1. **Convert the DFA into a generalized NFA, GNFA**
2. **Convert the GNFA into a RE**
What is an GNFA?

- A GNFA is an NFA wherein the transition arrows may have any REs as labels.
What is an GNFA?

- A GNFA is an NFA wherein the transition arrows may have any REs as labels.
- Hence, GNFA reads strings specified by REs (block of symbols) from the input.
What is an GNFA?

• A GNFA is an NFA wherein the transition arrows may have any REs as labels
• Hence, GNFA reads strings specified by REs (block of symbols) from the input
• GNFA moves along a transition arrow connecting two states representing a RE, Figure 1
Example GNFA

Figure 1: A GNFA
• A GNFA is nondeterministic and so, it may have many different ways to process the same input string.
Note

- A GNFA is nondeterministic and so, it may have many different ways to process the same input string.
- A GNFA accepts its input if its entire processing can cause the GNFA to be in an accept state.
• The start state has transition arrows to every other state but no arrow coming from any other state.
GNFA of special form

- **The start state** has transition arrows to every other state but no arrow coming from any other state.
- **There is only one accept state** and it has arrows coming in from every other state, but has no arrows going to any other state.
• **The start state** has transition arrows to every other state but no arrow coming from any other state

• **There is only one accept state** and it has arrows coming in from every other state, but has no arrows going to any other state

• The **accept state** is **different** from the **start state**
The start state has transition arrows to every other state but no arrow coming from any other state.

There is only one accept state and it has arrows coming in from every other state, but has no arrows going to any other state.

The accept state is different from the start state.

Except for start and accept states, one arrow goes from every state to every other state and from each state to itself.
A DFA is converted to a GNFA of special form by the following procedure:
Converting DFA to GNFA

A DFA is converted to a GNFA of special form by the following procedure:

1. **Add a new start state** with an ϵ arrow to the old start state and a **new accept state** with an ϵ arrow from all old accept states
Converting DFA to GNFA

A DFA is converted to a GNFA of special form by the following procedure:

1. **Add a new start state** with an ϵ arrow to the old start state and a **new accept state** with an ϵ arrow from all old accept states

2. If any arrows have multiple labels or if there are multiple arrows going between the same two states in the same direction replace each with a single arrow whose label is the union of the previous labels
Converting DFA to GNFA

A DFA is converted to a GNFA of special form by the following procedure:

1. **Add a new start state** with an ϵ arrow to the old start state and a **new accept state** with an ϵ arrow from all old accept states

2. If any arrows have multiple labels or if there are multiple arrows going between the same two states in the same direction replace each with a single arrow whose label is the union of the previous labels

3. **Add arrows labeled \emptyset** between states that had no arrows
Note

Adding \emptyset transitions doesn’t change the language recognized by DFA because a transition labeled by \emptyset can never be used.
Adding \emptyset transitions doesn’t change the language recognized by DFA because a transition labeled by \emptyset can never be used.

Assumption: now we assume that all GNFAs are in the special form just defined.
Assume that GNFA has k states
Converting $GNFA \rightarrow RE$

Assume that GNFA has k states

- Because start and accept states are different from each other, it results that $k \geq 2$
Converting $GNFA \rightarrow RE$

Assume that GNFA has k states

- Because start and accept states are different from each other, it results that $k \geq 2$
- If $k > 2$ we construct an equivalent GNFA with $k - 1$ states. This can be repeated for each new GNFA until we obtain a GNFA with $k = 2$ states.
Converting $GNFA \rightarrow RE$

Assume that GNFA has k states

- Because start and accept states are different from each other, it results that $k \geq 2$
- If $k > 2$ we construct an equivalent GNFA with $k - 1$ states. This can be repeated for each new GNFA until we obtain a GNFA with $k = 2$ states.
- If $k = 2$, GNFA has a single arrow that goes from start to accept and is labeled by a RE that specifies the language recognized by the original DFA
Example DFA conversion

Assuming that the original DFA has 3 states the process of its conversion is shown in Figure 2.

Figure 2: Example DFA conversion to RE
Note

- **The crucial step** is the construction of an equivalent **GNFA** with one fewer states than a **GNFA** when **GNFA** has \(k > 2 \) states.
Note

- **The crucial step** is the construction of an equivalent $GNFA$ with one fewer states than a $GNFA$ when $GNFA$ has $k > 2$ states.

- **This is done by selecting a state, ripping it out** of the machine, and **repairing the remainder** so that the same language is still recognized.
The crucial step is the construction of an equivalent GNFA with one fewer states than a GNFA when GNFA has \(k > 2 \) states.

This is done by selecting a state, ripping it out of the machine, and repairing the remainder so that the same language is still recognized.

Any state can be selected for ripping, providing that it is not start or accept state. Such a state exists because \(k > 2 \)
Repairing after ripping a state

Assume that the state of a GNFA selected for ripping is q_{rip}.
Assume that the state of a GNFA selected for ripping is q_{rip}

- After removing q_{rip} we repair the machine by altering the REs that label each of the remaining transitions
Assume that the state of a GNFA selected for ripping is q_{rip}

- **After removing** q_{rip} **we repair** the machine by altering the REs that label each of the remaining transitions
- **The new labels compensate** for the absence of q_{rip} by **adding** back the lost computation
Assume that the state of a GNFA selected for ripping is q_{rip}

- After removing q_{rip} we repair the machine by altering the REs that label each of the remaining transitions.
- The new labels compensate for the absence of q_{rip} by adding back the lost computation.
- The new label of the arrow going from state q_i to q_j is a RE that specifies all strings that would take the machine from q_i to q_j either directly or via q_{rip}.
We illustrate the approach of ripping and repairing in Figure 3.

Figure 3: Ripping and repairing an GNFA
Note

- New labels obtained by concatenating REs of arrows that go through q_{ri} and union them with the labels of the arrows that travel directly between q_i and q_j
• New labels obtained by concatenating REs of arrows that go through q_{rip} and union them with the labels of the arrows that travel directly between q_i and q_j

• This construct is carried out for each arrow that goes from state q_i to any state q_j including $q_i = q_j$
Formal proof

- First we need to define formally the GNFA
Formal proof

• First we need to define formally the GNFA
• Since new labels are REs we use the symbol \mathcal{R}_Σ to denote the collection of REs over an alphabet Σ
Formal proof

- First we need to define formally the GNFA
- Since new labels are REs we use the symbol R_{Σ} to denote the collection of REs over an alphabet Σ
- To simplify, denote by q_s and q_a the start and accept states of the GNFA
Transition function of a GNFA

- Because an arrow connects every state to every other state, except that no arrows are coming from q_a or going to q_s, the domain of the transition function of a GNFA is $\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}_\Sigma$
Transition function of a GNFA

Because an arrow connects every state to every other state, except that no arrows are coming from q_a or going to q_s, the domain of the transition function of a GNFA is $\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \to R_\Sigma$

If $\delta(q_i, q_j) = R$ the arrow from q_i to q_j has the label R
Definition 1.64

A generalized NFA (GNFA) is a 5-tuple \((Q, \Sigma, \delta, q_s, q_a)\) where:
Definition 1.64

A generalized NFA (GNFA) is a 5-tuple \((Q, \Sigma, \delta, q_s, q_a)\) where:

1. \(Q\) is the finite set of states
Definition 1.64

A generalized NFA (GNFA) is a 5-tuple \((Q, \Sigma, \delta, q_s, q_a)\) where:

1. \(Q\) is the finite set of states
2. \(\Sigma\) is the input alphabet
Definition 1.64

A generalized NFA (GNFA) is a 5-tuple \((Q, \Sigma, \delta, q_s, q_a)\) where:

1. \(Q\) is the finite set of states
2. \(\Sigma\) is the input alphabet
3. \(\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}_\Sigma\) is the transition function where \(\mathcal{R}_\Sigma\) is the set of REs over \(\Sigma\)
A generalized NFA (GNFA) is a 5-tuple \((Q, \Sigma, \delta, q_s, q_a)\) where:

1. \(Q\) is the finite set of states
2. \(\Sigma\) is the input alphabet
3. \(\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \to \mathcal{R}_\Sigma\) is the transition function where \(\mathcal{R}_\Sigma\) is the set of REs over \(\Sigma\)
4. \(q_s\) is the unique start state
Definition 1.64

A generalized NFA (GNFA) is a 5-tuple \((Q, \Sigma, \delta, q_s, q_a)\)
where:

1. \(Q\) is the finite set of states
2. \(\Sigma\) is the input alphabet
3. \(\delta: (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}_\Sigma\) is the transition function where \(\mathcal{R}_\Sigma\) is the set of REs over \(\Sigma\)
4. \(q_s\) is the unique start state
5. \(q_a\) is the unique accept state and \(q_a \neq q_s\).
A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \ldots w_k$ where $w_i \in \Sigma^*$, $1 \leq i \leq k$, if a sequence of states q_0, q_1, \ldots, q_k exits such that:
A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1w_2 \ldots w_k$ where $w_i \in \Sigma^*, 1 \leq i \leq k$, if a sequence of states q_0, q_1, \ldots, q_k exits such that:

1. $q_o = q_s$ is the start state
A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \ldots w_k$ where

$w_i \in \Sigma^*$, $1 \leq i \leq k$, if a sequence of states q_0, q_1, \ldots, q_k

exits such that:

1. $q_0 = q_s$ is the start state
2. $q_k = q_a$ is the accept state
A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \ldots w_k$ where $w_i \in \Sigma^*$, $1 \leq i \leq k$, if a sequence of states q_0, q_1, \ldots, q_k exits such that:

1. $q_0 = q_s$ is the start state
2. $q_k = q_a$ is the accept state
3. For each i, $\delta(q_{i-1}, q_i) = R_i$ and $w_i \in L(R_i)$, i.e., R_i is the RE labeling the arrow from q_{i-1} to q_i and w_i is an element of the language specified by this expression
More proof ideas

Returning to the proof of Lemma 1.60, we assume that M is a DFA recognizing the language A and proceed as follows:
More proof ideas

Returning to the proof of Lemma 1.60, we assume that M is a DFA recognizing the language A and proceed as follows:

- Convert M into a GNFA G by adding a new start state and a new accept state and the additional arrows
More proof ideas

Returning to the proof of Lemma 1.60, we assume that M is a DFA recognizing the language A and proceed as follows:

- Convert M into a GNFA G by adding a new start state and a new accept state and the additional arrows
- Use the procedure $Convert(G)$ that maps G into a RE, as explained before, while preserving the language A
More proof ideas

Returning to the proof of Lemma 1.60, we assume that M is a DFA recognizing the language A and proceed as follows:

- **Convert M into a GNFA G** by adding a new start state and a new accept state and the additional arrows
- **Use the procedure $\text{Convert}(G)$** that maps G into a RE, as explained before, while preserving the language A.

$\text{Convert}()$ is recursive; however, the case when GNFA has only two states is handled without recursion.
1. Let k be the number of states of G, $k \geq 2$.
1. Let k be the number of states of G, $k \geq 2$.

2. If $k = 2$ then G must consist of a start state and an accept state and a single arrow connecting them, labeled by a RE R. Return R
Let k be the number of states of G, $k \geq 2$.

2. If $k = 2$ then G must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE R. Return R.

3. While $k > 2$, select any state $q_{ri} \in Q$, different from q_s and q_a and let G' be the GNFA $(Q', \Sigma, \delta', q_s, q_a)$ where:
Convert(G)

1. Let \(k \) be the number of states of \(G \), \(k \geq 2 \).

2. If \(k = 2 \) then \(G \) must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE \(R \). Return \(R \)

3. While \(k > 2 \), select any state \(q_{rip} \in Q \), different from \(q_s \) and \(q_a \) and let \(G' \) be the GNFA \((Q', \Sigma, \delta', q_s, q_a) \) where:
 - \(Q' = Q \setminus \{ q_{rip} \} \)
Convert \((G)\)

1. Let \(k\) be the number of states of \(G\), \(k \geq 2\).

2. If \(k = 2\) then \(G\) must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE \(R\). Return \(R\).

3. While \(k > 2\), select any state \(q_{rip} \in Q\), different from \(q_s\) and \(q_a\) and let \(G'\) be the GNFA \((Q', \Sigma, \delta', q_s, q_a)\) where:
 - \(Q' = Q - \{q_{rip}\}\)
 - for any \(q_i \in Q' - \{q_a\}\) and any \(q_j \in Q' - \{q_s\}\) let \(\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)\) where:
 - \(R_1 = \delta(q_i, q_{rip})\), \(R_2 = \delta(q_{rip}, q_{rip})\), \(R_3 = \delta(q_{rip}, q_j)\), \(R_4 = \delta(q_i, q_j)\)
Convert(G)

1. Let \(k \) be the number of states of \(G \), \(k \geq 2 \).

2. If \(k = 2 \) then \(G \) must consists of a start state and an accept state and a single arrow connecting them, labeled by a RE \(R \). Return \(R \).

3. **While** \(k > 2 \), select any state \(q_{rip} \in Q \), different from \(q_s \) and \(q_a \) and let \(G' \) be the GNFA \((Q', \Sigma, \delta', q_s, q_a) \) where:
 - \(Q' = Q - \{q_{rip}\} \)
 - for any \(q_i \in Q' - \{q_a\} \) and any \(q_j \in Q' - \{q_s\} \) let
 \[\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4) \]
 where:
 \[R_1 = \delta(q_i, q_{rip}), \quad R_2 = \delta(q_{rip}, q_{rip}), \quad R_3 = \delta(q_{rip}, q_j), \quad R_4 = \delta(q_i, q_j) \]
 - \(\text{Convert}(G') \);
Claim 1.65

For any GNFA G, $\text{Convert}(G)$ is equivalent to G
Claim 1.65

For any GNFA G, $\text{Convert}(G)$ is equivalent to G

Proof:
Claim 1.65

For any GNFA G, $\text{Convert}(G)$ is equivalent to G

Proof: by induction on k, the number of states of G
Induction Basis: $k = 2$

- If G has only two states, by definition, it can have only a single arrow which goes from q_s to q_a
Induction Basis: \(k = 2 \)

- If \(G \) has only two states, by definition, it can have only a single arrow which goes from \(q_s \) to \(q_a \).
- The RE labeling this arrow specifies the language accepted by \(G \).
Induction Basis: $k = 2$

- If G has only two states, by definition, it can have only a single arrow which goes from q_s to q_a

- The RE labeling this arrow specifies the language accepted by G

- Since this expression is returned by $\text{Convert}(G)$, it means that G and $\text{Convert}(G)$ are equivalent
Induction Step

Assume that the claim is true for G having $k - 1$ states and use this assumption to show that the claim is true for an GNFA with k states.
Induction Step

Assume that the claim is true for G' having $k - 1$ states and use this assumption to show that the claim is true for an GNFA with k states

- Observe from construction that G and G' recognize the same language
Assume that the claim is true for G having $k - 1$ states and use this assumption to show that the claim is true for an GNFA with k states

- **Observe from construction** that G and G' recognize the same language

- **Suppose G accepts the input w**. Then in an accepting branch of computation, G enters the sequence of states $q_s, q_1, q_2, q_3, \ldots, q_a$
Induction Step

Assume that the claim is true for G having $k - 1$ states and use this assumption to show that the claim is true for an GNFA with k states

- Observe from construction that G and G' recognize the same language
- Suppose G accepts the input w. Then in an accepting branch of computation, G enters the sequence of states $q_s, q_1, q_2, q_3, \ldots, q_a$
- Show that G'' has an accepting computation for w, too.
1. If none of the states $q_s, q_1, q_2, \ldots, q_a$ is q_{rip}, clearly G' also accepts w because each of the new REs labeling arrows of G' contain the old REs as part of a union.
Induction step, continuation

1. If none of the states $q_s, q_1, q_2, \ldots, q_a$ is q_{rip}, clearly G' also accepts w because each of the new REs labeling arrows of G' contain the old REs as part of a union.

2. If q_{rip} does appear in the computation $q_s, q_1, q_2, \ldots, q_a$ by removing each run of consecutive q_{rip} states we obtain an accepting computation for G'. This is because states q_i and q_j bracketing a run of consecutive q_{rip} states have a new RE on the arrow between them that specify all strings taking q_i to q_j via q_{rip} on G. So, G' accepts w in this case too.
Induction step, continuation

For the other direction, suppose that G' accepts w.
Induction step, continuation

For the other direction, suppose that G' accepts w.

1. Each arrow between any two states q_i and q_j in G' is labeled by a RE that specifies strings specified by arrows in G from q_i directly to q_j or via q_{ri}.

Second Part of Regular Expressions Equivalence with Finite Automata – p.26/30
For the other direction, suppose that G' accepts w.

1. Each arrow between any two states q_i and q_j in G' is labeled by a RE that specifies strings specified by arrows in G from q_i directly to q_j or via q_{rip}

2. Hence, by the definition of GNFA it follows that G must also accept w.
For the other direction, suppose that G' accepts w.

1. Each arrow between any two states q_i and q_j in G' is labeled by a RE that specifies strings specified by arrows in G from q_i directly to q_j or via q_{rip}.

2. Hence, by the definition of GNFA it follows that G must also accept w.

That is, G and G'' accept the same language.
The induction hypothesis states that when the algorithm calls itself recursively on input G', the result is a RE that is equivalent to G' because G'' has $k - 1$ states.
Conclusion

• The induction hypothesis states that when the algorithm calls itself recursively on input G', the result is a RE that is equivalent to G' because G'' has $k - 1$ states.

• Hence, that RE is also equivalent to G because G'' is equivalent to G.

The induction hypothesis states that when the algorithm calls itself recursively on input G', the result is a RE that is equivalent to G' because G'' has $k - 1$ states.

Hence, that RE is also equivalent to G because G'' is equivalent to G.

Consequently, $\text{Convert}(G')$ and G are equivalent.
Example 1.35

Convert the DFA D in Figure 4 into the RE that specifies the language accepted by D

![DFA Diagram]

Figure 4: DFA D to be converted
Figure 5 shows the four-state GNFA obtained from D by adding new start state and accept state and replacing a, b by $a \cup b$.
Removing state 1 and then state 2, Figure 6 shows the GNFA G_3:

Figure 6: GNFA G_3 obtained from G_2