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Note
These three entities are central to every mathematical
subject, including the theory of computation

• Theorems are the heart of mathematics
• Proofs are the soul of mathematics
• Definitions are the spirit of mathematics
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Definitions
• A definition describes the objects and the notions

used by the mathematical subject

• A definition may be simple, as in the definition of
a set, or it can be complex as in the definition of
the security in cryptography

• Precision is essential to any mathematical
definition

Note: a definition must make clear what constitutes
the defined object and what does not
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Formally
A definition has two parts:

• A class of objects to which the defined object
belongs.
Example: when defining prime numbers this class is the set on natural

numbers

• A property that distinguishes the defined object
within the class.
Example: p ∈ N is prime iff 6 ∃k, q ∈ N : k, q 6= p, 1 ∧ p = kq

Note: a formal definition implies that both
components are formal
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Mathematical statements
• Typically a mathematical statement expresses that

some object has certain property

• A mathematical statement may or may not be
true. However, like a definition it must be precise

• There must not be any ambiguity about the
meaning of mathematical statement

Note: to make a mathematical statement precise one needs to
formalize both the object and the property stated.
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Proofs
• A proof is a convincing logical argument that a

statement is true

• A mathematical proof must be convincing in an
absolute sense; this is rather different from the
notion of proof in everyday life or in law

• In everyday life or in law a proof is convincing
“beyond any reasonable doubt" and is based on
compelling evidence

• However, evidence plays no role in a
mathematical proof. A mathematician demands
“proof beyond any doubt"
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Theorems
• Theorems: mathematical statements proved true

• Note: mathematicians reserve the word theorem
for statements of special interest

• Lemmas: mathematical statements proved true,
that are interesting only because they assist in the
proofs of another, more significant statement

• Corollaries: true statements that are
consequences of theorems or their proofs
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Finding proofs
Note: the only way to determine the truth or falsity of
a mathematical statement is with a mathematical
proof!

• Finding proofs is not always simple!
• Sometimes a proof is a simple set of rules or

processes
• Other times, it requires inspiration and

transpiration
• This course requires you to produce proofs!
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Note
• The author of the textbook advise us: “do not

despair at the prospect of finding a proof"

• Even though no one has a recipe for producing
proofs, some helpful general strategies are
available
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Strategies for finding proofs
• Read carefully the statement you want to prove

• Be sure that you understand all the notation
• Rewrite the statement in your own words
• Break the statement down and consider each part

separately; sometimes the parts of a multipart
statement are not immediately evident
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Example multipart statement

P if and only if Q, often written P iff Q, where both P
and Q are mathematical statements

• The first part is “P only if Q", which means:
if P is true then Q is true, written P ⇒ Q

• The second part is “P if Q", which means:
if Q is true then P is true, written P ⇐ Q
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Terms used by “iff" proofs
• P ⇒ Q is called forward direction of the original

statement

• P ⇐ Q is called reverse direction of the original
statement

• The original statement can be written P ⇔ Q
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Note
• To prove an iff statement one must prove each of

the two implications constituting “iff"

• Often one of these implications is easier to prove
than the other. Always start with the easy one.
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Other multipart statements

Statements stating that two sets A and B are equal

• The first part states that “A is a subset of B"
• The second part states that “B is a subset of A"

Proof:

1. ∀a ∈ A show that a ∈ B and

2. ∀b ∈ B show that b ∈ A
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Advise
Try to get an intuitive “gut" feeling of why the
statement should be true

• Experimenting with examples is helpful
• Example: If a statement says that all objects of

certain type have a particular property
• First, pick a few objects of that type and observe that they actually

do have that property

• Then, try find an object that fails to have the property, called a

counterexample
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Note
• If the statement to prove is true one cannot find

counterexamples

• Seeing where one runs into difficulty when
attempting to find counterexamples can help
understand why the statement is true

Definitions, Theorems, and Proofs – p.16/49



Note
• If the statement to prove is true one cannot find

counterexamples
• Seeing where one runs into difficulty when

attempting to find counterexamples can help
understand why the statement is true

Definitions, Theorems, and Proofs – p.16/49



Example statement and proof

Statement: for every graph G, the sum of the degrees

of all the nodes in G is an even number
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The “gut" feeling

Pick up a few graphs and observe:

j�
��

jA
AA

j
sum=2+2+2=6

j�
��

jA
AA

j

�
��

jA
AA

j
sum=2+3+4+3+2=14

Figure 1: Example graphs and degrees
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Find a counter example

That is, try to find a graph in which the sum of node
degrees is an odd number, Figure 2

j�
�
�

j

j

j@
@

@

sum=1+1+1+3=6

Figure 2: Try a counterexample
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Why statement is true?
• Every time an edge is added sum increases by 2

• The sum of degrees is the sum of edges
multiplied by 2
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Another suggestion
If you are stuck trying to prove a statement, try
something easier!

• Attempt to prove a special case of the statement.
Example: if you try to prove that some property is true ∀k > 0, first

try to prove it for k = 1

• If you succeed with a special case, try one a little
more complicated.
Example: if you succeeded with k = 1 try k = 2

• Repeat this procedure until you can get the
general proof
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Note
When you have found a proof, write it up properly!

• A well-written proof is a sequence of statements,
wherein each one follows by simple reasoning
from previous statements in the sequence

• Carefully writing a proof is important, both to
enable a reader to understand it and for the prover
to be sure that it is free from errors
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Tips for producing proofs
• Be patient. Finding proofs takes time. If you

don’t see how to do it right away, don’t worry.
One can work for weeks, or even years!

• Come back to it. Look over the statement you
want to prove, think about it a bit, leave it, and
return a few minutes or hours later. Let the
unconscious, intuitive part of your mind have a
chance to work.
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More tips
• Be neat. When you are building your intuition for

the statement you want to prove, use simple, clear
pictures and text. Furthermore, when you are
writing a solution for another person to read,
neatness will help that person understand it.

• Be concise. Brevity helps you express high-level
ideas without getting lost in details. Good
mathematical notation is useful for expressing
ideas concisely. However, do not forget Einstein’s
suggestion: simple, as simple as possible, but not
simpler
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ideas without getting lost in details. Good
mathematical notation is useful for expressing
ideas concisely. However, do not forget Einstein’s
suggestion: simple, as simple as possible, but not
simpler
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Example: DeMorgan’s Laws
Theorem: for any two sets A and B,

A ∪ B = A ∩ B

Understanding the statement

• Is the meaning of this theorem clear? Do you
understand the meaning of ∪,∩, A?

• We must show that two sets are equal. Do you
remember how this can be done?

• Can you consider a few examples before trying
the proof?
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The proof
Prove the assertion A ∪ B = A ∩ B by showing

1. A ∪ B ⊆ A ∩ B: Suppose x ∈ A ∪ B. Then, from the definition of

the complement of a set it follows that x 6∈ A ∪ B. Hence, x 6∈ A and

x 6∈ B. Then x ∈ A and x ∈ B. That is, x ∈ A ∩ B

2. A ∩ B ⊆ A ∪ B: Suppose x ∈ A ∩ B. By the definition of

intersection, x ∈ A and x ∈ B. Hence, by definition of complement,

x 6∈ A and x 6∈ B. That is, x 6∈ A ∪ B. Hence, x ∈ A ∪ B
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Another Example
Theorem: In a graph G the sum of the degrees of the
nodes of G is an even number.

Proof:
1. Every edge in G is connected to two nodes.

2. Each edge contributes 1 to each node to which it is connected

3. Therefore, each edge contributes 2 to the sum of the degrees of all

nodes

4. Hence, if G contains e edges, the sum of the degrees of all nodes of G

is 2e, which is an even number
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Types of proofs
Several types of arguments arise frequently in
mathematical proofs. The few that often occur in the
theory of computation are:

• Proof by construction
• Proof by contradiction
• Proof by induction

Definitions, Theorems, and Proofs – p.28/49



Types of proofs
Several types of arguments arise frequently in
mathematical proofs. The few that often occur in the
theory of computation are:

• Proof by construction

• Proof by contradiction
• Proof by induction

Definitions, Theorems, and Proofs – p.28/49



Types of proofs
Several types of arguments arise frequently in
mathematical proofs. The few that often occur in the
theory of computation are:

• Proof by construction
• Proof by contradiction

• Proof by induction

Definitions, Theorems, and Proofs – p.28/49



Types of proofs
Several types of arguments arise frequently in
mathematical proofs. The few that often occur in the
theory of computation are:

• Proof by construction
• Proof by contradiction
• Proof by induction

Definitions, Theorems, and Proofs – p.28/49



Note
A proof may contain more than one type of argument
because the proof may contain several different
subproofs of several components of the main statement
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Proof by construction
• Many theorems state that a particular type of

object exists.

• One way to prove such a theorem is by
demonstrating how to construct that object.

Note: this technique is called a proof by construction
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Example proof by construction

Theorem: For each even number n > 2 there exists a
3-regular graph with n nodes.

Note: a 3-regular graph is a graph where every node

has the degree 3
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Proof
Method: by construction

Proof: Construct G = (V,E), V = {0, 1, 2, . . . , n − 1}, and

E = {{i, i + 1} | 0≤ i≤n − 2}∪{{n − 1, 0}}∪{{i, i + n/2} | 0≤ i≤n/2 − 1}

1. Take a particular value of n and picture the nodes of this graph written

consecutively around the circumference of a circle

2. The edges described by 0 ≤ i ≤ n − 2 and {n − 1, 0} go between

adjacent pairs around the circle

3. The edges described by 0 ≤ i ≤ n/2 − 1 go between nodes of opposite

sides of the circle

Note: use a circle to picture this figure and thus increase intuition
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Proof by contradiction
• Assume that the theorem is false

• Show that this assumption leads to an obviously
false consequence called a contradiction

Note: this kind of reasoning is often used in everyday life
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Examples from everyday life
• Jacks sees Jill, who just come from outdoors

• On observing that she is completely dry, he
knows that it is not raining

• His “proof" that it is not raining: if it were raining
(the assumption) Jill would be wet (obvious false
conclusion). Therefore it must not be raining
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A mathematical proof
Theorem:

√
2 is irrational

Proof: by contradiction

Assume that
√

2 = m/n, where m, n are integers, and

have no common divisors (if they have we may sim-

plify the fraction m/n by their common divisors)
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Proof, continuation

1. Multiply both sides of the equality
√

2 = m/n by n, obtaining

n
√

2 = m

2. Square both sides of the equality, obtaining 2n2 = m2

3. Because m2 is 2n2 it result that m2 is even, hence m is also even, i.e.,

m = 2k, (square of an odd number is always odd).

4. Replacing m with 2k in the above equality we get: 2n2 = (2k)2 = 4k2

5. Dividing both sides by 2 we obtain n2 = 2k2, i.e. n is even.

6. We have thus established that both m and n are even, i.e., they have a

common divisor, what is a contradiction
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n
√

2 = m

2. Square both sides of the equality, obtaining 2n2 = m2

3. Because m2 is 2n2 it result that m2 is even, hence m is also even, i.e.,

m = 2k, (square of an odd number is always odd).
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Proof by induction
• This is an advanced proof-method used to show

that all elements of a set have a specified property
• Examples:

1. we may use the proof by induction to show that an arithmetic

expression computes a desired quantity for every assignment to its

variables, such as
∑i=n

i=1
i = n(n + 1)/2

2. we may proof by induction that a program works correctly at all

steps for all inputs!
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Illustration
Let us take the infinite set to be N = {1, 2, . . .} and
say that we want to show that a property P is true for
all natural numbers, i.e., P (k) is true for all k ∈ N

• Induction basis: show that P (1) is true
• Induction step: show that for each i ≥ 1, if P (i)

(called induction hypothesis) is true then so is
P (i + 1)

When both of these parts are proved, it result that P (i)

is true for every i ∈ N .
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Question

Why can we conclude that P (i) is true for all i ∈ N ?
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Formal rationale
The mathematical foundation resides in the structure
of N , which is an inductive set:

Definition: A is inductive if:

(1) ∅ ∈ A and
(2) ∀a ∈ A ⇒ succ(a) = {a ∪ {a}} ∈ A

Construction: N was constructed by the rules:

0 = ∅
1 = {∅} = {0}
2 = {∅, {∅}} = {0, 1}
3 = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}

. . .
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Intuitive rationale
1. P (1) is true in virtue of Induction basis

2. If P (1) is true then P (2) is true in virtue of
Induction step

3. If P (2) is true then P (3) is true in virtue of
Induction step

4. The process can continue for all natural numbers
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Variations and generalizations
• The Induction basis doesn’t necessarily need to

start with 1; it may start with any value b. In this
case Induction step must show that P (k) implies
P (k + 1) for k ≥ b

• Sometimes a stronger induction hypothesis is
useful, such as P (j) for all j ≤ i

• One can use instead of N a set isomorphic with
N ; one can also generalize N to a transitive set
A.
Transitive set: A is transitive if ∀a ∈ A ∧ ∀x ∈ a ⇒ x ∈ A
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Application
We will prove by induction the correctness of the for-

mula used to calculate the size of the monthly pay-

ments of mortgages
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Observations
• For investment reasons people borrow money (called loan) and repay

the loan over a certain number of years

• The terms of such repayments stipulate that a fixed amount of money is

payed each month to cover the interest as well as the part of the original

sum so that total is repayed in say 30 years

• Formula for calculating monthly payments is shrouded in mystery. But

it is actually quite simple. We will show by induction that it is correct
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Notations
• Let P be the principal,i.e., the amount of the

original loan

• Let I be the yearly interest rate of the loan. The
value I = 0.06 indicates a 6% interest rate

• Let Y be the monthly payment
• Denote by M the rate at which the loan changes

each month because of the interest in it, i.e.,
M = 1 + I/12, is called monthly multiplier
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Things happening each month
• The amount of loan tends to increase because of

the monthly multiplier

• The amount of loan tends to decrease because of
the monthly payment

• Let Pt be the amount of the loan outstanding after
the t-th month
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Relationships
• P0 = P , i.e., no loan has been payed

• P1 = MP0 − Y , is the amount of loan after one
month

• P2 = MP1 − Y is the amount of loan after 2
months

• In general, the amount of loan after k + 1 months
is Pk+1 = PkM − Y
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Putting all together
Theorem 0.5 For each t ≥ 0,

Pt = PM t − Y (
M t − 1

M − 1
)

Proof: By induction

• Induction basis: Prove that formula is true for t = 0.

Proof: replacing t = 0 in the formula and observing that M 0 = 1 we

obtain P0 = P

Definitions, Theorems, and Proofs – p.48/49



Putting all together
Theorem 0.5 For each t ≥ 0,

Pt = PM t − Y (
M t − 1

M − 1
)

Proof: By induction

• Induction basis: Prove that formula is true for t = 0.

Proof: replacing t = 0 in the formula and observing that M 0 = 1 we

obtain P0 = P

Definitions, Theorems, and Proofs – p.48/49



Putting all together
Theorem 0.5 For each t ≥ 0,

Pt = PM t − Y (
M t − 1

M − 1
)

Proof: By induction

• Induction basis: Prove that formula is true for t = 0.

Proof: replacing t = 0 in the formula and observing that M 0 = 1 we

obtain P0 = P

Definitions, Theorems, and Proofs – p.48/49



Proof, continuation
• Induction step: For each k ≥ 0 assume that the formula is true for

t = k and show that then it is true for t = k + 1; the induction

hypothesis states that:

Pk = PMk − Y (M
k
−1

M−1
) implies Pk+1 = PMk+1 − Y (M

k+1
−1

M−1
)

1. From the definition we have: Pk+1 = PkM − Y

2. Using the induction hypothesis to calculate Pk we get

Pk+1 = [PMk − Y (M
k
−1

M−1
)]M − Y

3. Evaluating the bracket [. . .] and replacing Y by Y M−1

M−1
we obtain:

Pk+1 = PMk+1 − Y (M
k+1

−M

M−1
) − Y (M−1

M−1
)

4. Factoring −Y we obtain

Pk+1 = PMk+1−Y (M
k+1

−M

M−1
+M−1

M−1
) = PMk+1−Y (M

k+1
−1

M−1
).

Thus, the formula is correct for t = k + 1, which proves the

theorem.
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