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Definitions

e A definition describes the and the
used by the mathematical subject

o A definition may be , as In the definition of
a set, or it can be as In the definition of
the security In cryptography

e Precision is to any mathematical
definition

Note: a definition must make clear
the defined object and
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Formally

A definition has two parts:

¢ A to which the defined object
belongs.
Example: when defining prime numbers this class is the set on natural
numbers

¢ A that distinguishes the defined object

within the class.
Example p € Nisprimeiff Ak,qe N :k,q#p,1 ANp=kq

Note: a formal definition implies that
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Mathematical statements

* Typically a mathematical statement expresses that
has certain property

Definitions, Theorems, and Proofs — p.5/49



Mathematical statements

* Typically a mathematical statement expresses that
has certain property

* A mathematical statement may or may not be
true. However, like a definition it

Definitions, Theorems, and Proofs — p.5/49



Mathematical statements

* Typically a mathematical statement expresses that
has certain property

* A mathematical statement may or may not be
true. However, like a definition it

e There must not be any ambiguity about the
of mathematical statement

Definitions, Theorems, and Proofs — p.5/49



Mathematical statements

* Typically a mathematical statement expresses that
has certain property

* A mathematical statement may or may not be
true. However, like a definition it

e There must not be any ambiguity about the
of mathematical statement

Note: to make a mathematical statement precise one needsto
formalize both the and the stated.
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Proofs

» A proof is a convincing logical argument that a
statement Is true
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Proofs

» A proof is a convincing logical argument that a
statement Is true

e A mathematical proof must be convincing in an
absolute sense; this is rather different from the
notion of proof in everyday life or in law

* Ineveryday life or in law a proof is convincing
“beyond any reasonable doubt™ and is based on
compelling evidence

* However, evidence plays no role in a
mathematical proof. A mathematician demands
“proof beyond any doubt"

Definitions, Theorems, and Proofs — p.6/49



Theorems

e Theorems: mathematical statements proved true
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Theorems

e Theorems: mathematical statements proved true

 Note: mathematicians reserve the word theorem
for statements of special interest

 Lemmas: mathematical statements proved true,
that are interesting only because they assist in the
proofs of another, more significant statement

o Corollaries: true statements that are
consequences of theorems or their proofs
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Finding proofs

Note: the only way to determine the truth or falsity of
a mathematical statement is with a mathematical
proof!
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Finding proofs

Note: the only way to determine the truth or falsity of
a mathematical statement is with a mathematical
proof!

* Finding proofs is not always simple!

e Sometimes a proof is a simple set of rules or
Processes

o Other times, It requires inspiration and
transpiration

e This course requires you to produce proofs!
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Note

e The author of the textbook advise us: “do not
despalr at the prospect of finding a proof"
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Note

e The author of the textbook advise us: “do not
despalr at the prospect of finding a proof"

* Even though no one has a recipe for producing

proofs, some helpful general strategies are
available
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Strategies for finding proofs

o Read carefully the statement
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Strategies for finding proofs

e Read carefully the statement you want to prove
e Be sure that you understand all the notation
* Rewrite the statement in your own words

* Break the statement down and consider each part
separately; sometimes the parts of a multipart
statement are not immediately evident
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Example multipart statement

Pif and only if Q, often written P iff Q, where both P
and () are mathematical statements
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Example multipart statement

Pif and only if Q, often written P iff Q, where both P
and () are mathematical statements

e The first part is , which means:
If Pistruethen Qistrue, written P = ()
* The second part is , which means:

If Qistruethen P istrue, written P < ()
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Terms used by “Iff'" proofs

. Is called forward direction of the original
statement

Definitions, Theorems, and Proofs — p.12/49



Terms used by “Iff'" proofs

. Is called forward direction of the original
statement

Is called reverse direction of the original
statement

Definitions, Theorems, and Proofs — p.12/49



Terms used by “Iff'" proofs

. Is called forward direction of the original
statement

Is called reverse direction of the original
statement

e The original statement can be written
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Note

e To prove an Iff statement one must prove each of
the two implications constituting “iff"
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Note

e To prove an Iff statement one must prove each of
the two implications constituting “iff"

« Often one of these implications is easier to prove
than the other. Always start with the easy one.
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Other multipart statements

Statements stating that two sets A and B
o The first part states that
e The second part states that

Proof:
1. Va € A show that e € B and
2. Vbe Bshowthatb € A
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Advise

Try to get an intuitive of why the
statement should be true
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do have that property
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Advise

Try to get an intuitive “gut™ feeling of why the
statement should be true

o Experimenting with examples is helpful

 Example: If a statement says that all objects of
certain type have a particular property

® [irst, pick a few objects of that type and observe that they actually
do have that property

® Then, try find an object that fails to have the property, called a
counterexample
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Note

o |f the statement to prove is true one cannot find
counterexamples
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Note

o |f the statement to prove Is true one cannot fina
counterexamples

e Seeing where one runs into difficulty when
attempting to find counterexamples can help
understand why the statement Is true
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Example statement and proof

Statement: for every graph (, the sum of the degrees
of all the nodes in & Is an even number
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The “gut" feeling

Pick up a few graphs and

sum= 2+2+2— sum 2+3+4+3+2=14

VANVAVAN

Figure 1. Example graphs and degrees
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Find a counter example

That 1s, try to find a graph in which the
Figure 2

sum=1+1+1+3=6

SN

Figure 2: Try a counterexample
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Why statement Is true?

e Every time an edge Is added sum increases by 2
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Why statement Is true?

e Every time an edge Is added sum increases by 2

e The sum of degrees iIs the sum of edges
multiplied by 2
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Another suggestion

If you are stuck trying to prove a statement, try
something easier!
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something easier!
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Example: if you try to prove that some property is true Vk > 0, first
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 |fyou succeed with a special case, (ry one a little
more complicated.
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Another suggestion

If you are stuck trying to prove a statement, try
something easier!

o Aftempt to prove a special case of the statement.

Example: if you try to prove that some property is true Vk > 0, first
try to prove it for k =1

 |fyou succeed with a special case, (ry one a little
more complicated.

Example: if you succeeded with k£ =1 try k = 2
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Another suggestion

If you are stuck trying to prove a statement,

' Attempt (0] Prove a of the statement.
Example: if you try to prove that some property is true Vk > 0, first

try to prove it for k =1
 |Tyou succeed with a special case,

Example: if you succeeded with k£ =1 try k = 2

e Repeat this procedure the
general proof
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Note

When you have found a proof, write it up
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Note

When you have found a proof, write it up properly!

o A well-written proof is a sequence of statements,
wherein each one follows by simple reasoning
from previous statements in the sequence
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Note

When you have found a proof, write it up properly!

o A well-written proof iIs a sequence of statements,
wherein each one follows by simple reasoning
from previous statements in the sequence

o Carefully writing a proof is important, both to
enable a reader to understand it and for the prover
to be sure that 1t Is free from errors
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Tips for producing proofs

e Be patient. Finding proofs . If you
don’t see how to do it right away, don’t worry.
One can work for weeks, or even years!
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Tips for producing proofs

e Be patient. Finding proofs . If you
don’t see how to do it right away, don’t worry.
One can work for weeks, or even years!

e Come back to it. Look over the statement you
want to prove, , leave It, and
return a few minutes or hours later. Let the
unconscious, intuitive part of your mind have a
chance to work.
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More tips

e Be neat. When you are building your intuition for
the statement you want to prove,
Furthermore, when you are
writing a solution for another person to read,
neatness will help that person understand it.
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More tips

e Be neat. When you are building your intuition for
the statement you want to prove,
Furthermore, when you are
writing a solution for another person to read,
neatness will help that person understand it.

e Be concise. Brevity helps you express high-level
Ideas without getting lost in details.

IS useful for expressing
Ideas concisely. However, do not forget Einstein’s

suggestion: simple, as simple as possible, but not
simpler
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Example: DeMorgan’s Laws

Theorem: for any two sets A and B,

AUB=ANBAB
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Example: DeMorgan’s Laws

Theorem: for any two sets A and B,

AUB=ANSKB

Understanding the statement

e |s the meaning of this theorem clear? Do you
understand the meaning of U, N, A?

e \WWe must show that two sets are equal. Do you
remember how this can be done?
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Example: DeMorgan’s Laws

Theorem: for any two sets A and B,

AUB=ANDKB

Understanding the statement

e |s the meaning of this theorem clear? Do you
understand the meaning of U, N, A?

e \WWe must show that two sets are equal. Do you
remember how this can be done?

e Can you consider a few examples before trying
the proof?
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The proof

Prove the assertion AU B = AN B by showing
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The proof

Prove the assertion AU B = AN B by showing

1. AUB C AnB: Suppose z € AU B. Then, from the definition of
the complement of a set it follows that x ¢ A U B. Hence, x ¢ A and
r& B. Thenz € Aandz € B. Thatis,z € ANB

2. ANB C AUDB: Suppose z € AN B.
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The proof

Prove the assertion AU B = AN B by showing

1. Suppose x € AU B. Then, from the definition of
the complement of a set it follows that x ¢ A U B. Hence, x ¢ A and
r& B. Thenz € Aandz € B. Thatis,z € ANB

2. Suppose z € AN B. By the definition of
intersection, z € A and = € B.
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The proof

Prove the assertion AU B = AN B by showing

1. Suppose x € AU B. Then, from the definition of
the complement of a set it follows that x ¢ A U B. Hence, x ¢ A and
r& B. Thenz € Aandz € B. Thatis,z € ANB

2. Suppose z € AN B. By the definition of
intersection, z € A and = € B. Hence, by definition of complement,
rZ Aandx € B. Thatis,x € AUB. Hence,z € AUB
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Another Example

Theorem: In a graph G the sum of the degrees of the
nodes of GG Is an even number.
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Another Example

Theorem: In a graph G the sum of the degrees of the
nodes of GG Is an even number.

Proof:
1. IS connected to two nodes.

2. to each node to which it is connected
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Another Example

Theorem: In a graph G the sum of the degrees of the
nodes of GG Is an even number.

Proof:
1. IS connected to two nodes.
2. to each node to which it is connected
3. , each edge contributes 2 to the sum of the degrees of all

nodes
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Another Example

Theorem: In a graph G the sum of the degrees of the
nodes of GG Is an even number.

Proof:
1. IS connected to two nodes.
2. to each node to which it is connected
3. , each edge contributes 2 to the sum of the degrees of all
nodes
4, If G contains e edges, the sum of the degrees of all nodes of G

IS 2¢, which 1s an even number

Definitions, Theorems, and Proofs — p.27/49



Types of proofs

Several types of arguments arise frequently In
mathematical proofs. The In the
theory of computation are:
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Types of proofs

Several types of arguments arise frequently In
mathematical proofs. The
theory of computation are:

Proof
Proof

Proof

0y construction
ny contradiction

0y Induction

In the
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Note

A proof may contain more than one type of argument
because the proof may contain several different
subproofs of several components of the main statement
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Proof by construction

« Many theorems state that a particular type of
object exists.
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Proof by construction

« Many theorems state that a particular type of
object exists.

e One way to prove such a theorem is by
demonstrating how to construct that object.
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Proof by construction

« Many theorems state that a particular type of
object exists.

e One way to prove such a theorem is by
demonstrating how to construct that object.

Note: this technique is called a proof by construction
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Example proof by construction

Theorem: For each even number n > 2 there exists a
3-regular graph with n nodes.
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Example proof by construction

Theorem: For each even number n > 2 there exists a
3-regular graph with n nodes.

Note: a 3-regular graph 1s a graph where every node
has the degree 3
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Proof
Method: by construction
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Proof
Method: by construction

Proof: Construct & = (V. F), V' = {0,1,2,....n— 1}, and
E={{i,i+1}0<i<n—2}u{{n—1,01}U{{i,i +n/2} |0<i<n/2 — 1}
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Method: by construction

Proof: Construct and

iin —1,0}}

1. Take a particular value of n and of this graph written
consecutively around the circumference of a circle
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Proof
Method: by construction

Proof: Construct & = (V. F), V' = {0,1,2,....n— 1}, and

F={{i,i+1}]0<i<n—2}u{{n —1,01}U{{i,i +n/2} |[0<i<n/2 — 1}

1. Take a particular value of n and picture the nodes of this graph written
consecutively around the circumference of a circle

2. The edges described by 0 < i <n —2and {n — 1,0} go between
adjacent pairs around the circle
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Proof
Method: by construction
Proof: Construct & = (V. F), V' = {0,1,2,....n— 1}, and
E={{i,i+1}]0<i<n—2}U{{n —1,0}}U{{i,i + n/2} |0<i<n/2 — 1}

1. Take a particular value of n and picture the nodes of this graph written
consecutively around the circumference of a circle

2. The edges described by 0 <7 <n —2and {n — 1,0} go between
adjacent pairs around the circle

3. The edges described by 0 < ¢ < n/2 — 1 go between nodes of opposite
sides of the circle
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Proof
Method: by construction

Proof: Construct & = (V. F), V' = {0,1,2,....n— 1}, and
E={{i,i+1}0<i<n—2}u{{n—1,01}U{{i,i +n/2} |0<i<n/2 — 1}

1. Take a particular value of n and picture the nodes of this graph written
consecutively around the circumference of a circle

2. The edges described by 0 <7 <n —2and {n — 1,0} go between
adjacent pairs around the circle

3. The edges described by 0 < ¢ < n/2 — 1 go between nodes of opposite
sides of the circle

Note: use a circle to picture this figure and thus increase intuition
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Proof by contradiction

e Assume that the theorem Is false
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Proof by contradiction

e Assume that the theorem Is false

o Show that this assumption leads to an obviously
false consequence called a contradiction
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Proof by contradiction

e Assume that the theorem Is false

o Show that this assumption leads to an obviously
false consequence called a contradiction

Note: thiskind of reasoning is often used in everyday life
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Examples from everyday life

o Jacks sees Jill, who just come
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Examples from everyday life

o Jacks sees Jill, who just come from outdoors

e On observing that she is completely dry, he
knows that it is not raining
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Examples from everyday life

o Jacks sees Jill, who just come from outdoors

e On observing that she is completely dry, he
knows that it is not raining

e His “proof" that It is not raining: If it were raining
(the assumption) Jill would be wet (obvious false
conclusion). Therefore it must not be raining
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A mathematical proof

Theorem: +/2 is irrational
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A mathematical proof

Theorem: +/2 is irrational
Proof: by contradiction
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A mathematical proof

Theorem: +/2 is irrational
Proof: by contradiction

, Wwhere m, n are integers, and
have no common divisors (if they have we may sim-
plify the fraction m /n by their common divisors)
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Proof, continuation

1. Multiply both sides of the equality v/2 = m/n by n, obtaining
n\/§ =m
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Proof, continuation

1. Multiply both sides of the equality v/2 = m/n by n, obtaining
n\/§ =m

2. Square both sides of the equality, obtaining 2n? = m?
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Proof, continuation

1. Multiply both sides of the equality v/2 = m/n by n, obtaining
nv2 =m
2. Square both sides of the equality, obtaining 2n? = m?

3. Because m? is 2n? it result that m? is even, hence m is also even, i.e.,
m = 2k, (square of an odd number is always odd).
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1. Multiply both sides of the equality v/2 = m/n by n, obtaining
nv2 =m
2. Square both sides of the equality, obtaining 2n? = m?

3. Because m? is 2n? it result that m? is even, hence m is also even, i.e.,
m = 2k, (square of an odd number is always odd).

4. Replacing m with 2k in the above equality we get: 2n? = (2k)? = 4k

Definitions, Theorems, and Proofs — p.36/49



Proof, continuation

1. Multiply both sides of the equality v/2 = m/n by n, obtaining
nv2 =m
2. Square both sides of the equality, obtaining 2n? = m?

3. Because m? is 2n? it result that m? is even, hence m is also even, i.e.,
m = 2k, (square of an odd number is always odd).

4. Replacing m with 2k in the above equality we get: 2n? = (2k)? = 4k

5. Dividing both sides by 2 we obtain n? = 2k?, i.e. n is even.
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Proof, continuation

1. Multiply both sides of the equality v/2 = m/n by n, obtaining
nv2 =m
2. Square both sides of the equality, obtaining 2n? = m?

3. Because m? is 2n? it result that m? is even, hence m is also even, i.e.,
m = 2k, (square of an odd number is always odd).

4. Replacing m with 2k in the above equality we get: 2n? = (2k)? = 4k
5. Dividing both sides by 2 we obtain n? = 2k?, i.e. n is even.

6. We have thus established that both m and » are even, i.e., they have a
common divisor, what is a contradiction
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Proof by induction

e This is an advanced proof-method used to show
that all elements of a set have a specified property
e Examples:

1. we may use the proof by induction to show that an arithmetic
expression computes a desired quantity for every assignment to its
variables, suchas > .— i =n(n+1)/2

2. we may proof by induction that a program works correctly at all
steps for all inputs!
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Proof by induction

e This is an advanced proof-method used to show
that all elements of a set have a specified property
e Examples:

1. we may use the proof by induction to show that an arithmetic
expression computes a desired quantity for every assignment to its
variables, suchas > .— i =n(n+1)/2

2. we may proof by induction that a program works correctly at all
steps for all inputs!
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lllustration

Let us take the infinite setto be N = {1,2, ...} and
say that we want to show that a property P is true for
all natural numbers, i.e., P(k) is true for all k € N/
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Let us take the infinite setto be N = {1,2, ...} and
say that we want to show that a property P is true for
all natural numbers, i.e., P(k) is true for all k € N/

e Induction basis: show that (1) is true
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lllustration

Let us take the infinite setto be N = {1,2, ...} and
say that we want to show that a property P is true for
all natural numbers, i.e., P(k) is true for all k € N/

e Induction basis: show that (1) is true

e Induction step: show that for each ¢ > 1, if P (i)
(called ) IS true then so IS

P(t+1)
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lllustration

Let us take the infinite setto be N = {1,2, ...} and
say that we want to show that a property P is true for
all natural numbers, i.e., P(k) is true for all k € N/

e Induction basis: show that (1) is true

e Induction step: show that for each ¢ > 1, if P (i)
(called ) IS true then so IS

P(t+1)

When both of these parts are proved, it result that 7 (¢)
is true for every ¢ € \V.
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Question

Why can we conclude that (1) is true for all i € N'?
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Formal rationale

The mathematical foundation resides in the structure
of A/, which is an inductive set:
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Formal rationale
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Definition: A 1s inductive if:

(1) ) € Aand
(2) Va € A = succ(a) ={aU{a}l} € A
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Formal rationale

The mathematical foundation resides in the structure
of A/, which is an inductive set:

Definition: A 1s inductive if:

(1) ) € Aand
(2) Va € A = succ(a) ={aU{a}l} € A

Construction: A was constructed by the rules:
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of A/, which is an inductive set:

Definition: A 1s inductive if:
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Construction: A was constructed by the rules:

0=10
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Formal rationale

The mathematical foundation resides in the structure
of A/, which is an inductive set:

Definition: A 1s inductive if:

(1) ) € Aand

(2) Va € A = succ(a) ={aU{a}l} € A
Construction: A was constructed by the rules:

0=10

1= {0} = {0}
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Formal rationale

The mathematical foundation resides in the structure
of A/, which is an inductive set:

Definition: A Is inductive If:
(1) ) € Aand
(2) Va € A = succ(a) ={aU{a}l} € A

Construction: A was constructed by the rules:
0=10

1= {0} = {0}

2={0,{0}} ={0,1}
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Formal rationale

The mathematical foundation resides in the structure
of A/, which is an inductive set:

Definition: A 1s inductive if:

(1) ) € Aand
(2) Va € A = succ(a) ={aU{a}l} € A

Construction: A was constructed by the rules:
0=10

1= {0} = {0}

2={0,{0}} ={0,1}

3 = {@7 {@}7 {(Z)a {(Z)}}} — {07 1, 2}
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Intuitive rationale

1. P(1)istrue in virtue of Induction basis

2. If P(1) is true then P(2) is true in virtue of
Induction step

3. If P(2) is true then P(3) is true in virtue of
Induction step

4. The process can continue for all natural numbers
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Intuitive rationale

1. P(1)istrue in virtue of Induction basis

2. If P(1) is true then P(2) is true in virtue of
Induction step

3. If P(2) is true then P(3) is true in virtue of
Induction step

4. The process can continue for all natural numbers
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Variations and generalizations

e The Induction basis doesn’t necessarily need to
start with 1; it may start with any value b. In this
case Induction step must show that 7 (k) implies
Pk+1)fork >b
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Variations and generalizations

e The Induction basis doesn’t necessarily need to
start with 1; it may start with any value b. In this
case Induction step must show that 7 (k) implies
Pk+1)fork >b

e Sometimes a stronger induction hypothesis is
useful, such as P(j) forall j <

Definitions, Theorems, and Proofs — p.42/49



Variations and generalizations

e The Induction basis doesn’t necessarily need to
start with 1; it may start with any value b. In this

case Induction step must show that 7 (k) implies
Pk+1)fork >1b

e Sometimes a stronger induction hypothesis is
useful, such as P(j) forall j <

 One can use instead of A a set isomorphic with
N; one can also generalize N to a transitive set
A.

Transitive set: Aistransitive ifVa e ANV €a=x € A
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Application

We will prove by induction the correctness of the for-
mula used to calculate the size of the monthly pay-
ments of mortgages
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Observations

® For investment reasons people borrow money (called loan) and repay
the loan over a certain number of years

Definitions, Theorems, and Proofs — p.44/49



Observations

® For investment reasons people borrow money (called loan) and repay
the loan over a certain number of years

® The terms of such repayments stipulate that a fixed amount of money is
payed each month to cover the interest as well as the part of the original
sum so that total is repayed in say 30 years
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Observations

® For investment reasons people borrow money (called loan) and repay
the loan over a certain number of years

® The terms of such repayments stipulate that a fixed amount of money is
payed each month to cover the interest as well as the part of the original
sum so that total is repayed in say 30 years

® Formula for calculating monthly payments is shrouded in mystery. But
It is actually quite simple. We will show by induction that it is correct
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Notations

o Let P be the principal,i.e., the amount of the
original loan
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original loan

e Let I be the yearly interest rate of the loan. The
value I = 0.06 indicates a 6% interest rate
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Notations

o Let P be the principal,i.e., the amount of the
original loan

e Let I be the yearly interest rate of the loan. The
value I = 0.06 indicates a 6% interest rate

e LetY be the monthly payment
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Things happening each month

e The amount of loan tends to increase because of
the monthly multiplier
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e The amount of loan tends to increase because of
the monthly multiplier

e The amount of loan tends to decrease because of
the monthly payment
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Things happening each month

e The amount of loan tends to increase because of
the monthly multiplier

e The amount of loan tends to decrease because of
the monthly payment

o Let P, be the amount of the loan outstanding after
the ¢-th month
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Relationships

e Py = P, l.e., noloan has been payed
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Relationships

e Py = P, l.e., noloan has been payed

e P, = MDPB,—-Y, Isthe amount of loan after one
month
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Relationships

e Py = P, l.e., noloan has been payed

e P, = MDPB,—-Y, Isthe amount of loan after one
month

e P, = MP; — Y Isthe amount of loan after 2
months
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Putting all together

Theorem 0.5 Foreach t > 0,

Mt—l)
M —1

P =PM' —Y(

Proof: By induction

® |nduction basis: Prove that formula is true for ¢t = 0.
Proof: replacing ¢t = 0 in the formula and observing that //° = 1 we
obtain Py = P
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Putting all together

Theorem 0.5 Foreach t > 0,

Mt—l)
M —1

P =PM' —Y(

Proof: By induction

® |nduction basis: Prove that formula is true for ¢t = 0.
Proof: replacing ¢t = 0 in the formula and observing that //° = 1 we
obtain Py = P
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Proof, continuation

® |nduction step: For each £ > 0 assume that the formula is true for
t = k and show that then it is true for ¢t = k& + 1; the induction
hypothesis states that:

P, = PM* — (X4 =LY implies P,y = PM*+! — y (4 _Z=1)
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Proof, continuation

® |nduction step: For each £ > 0 assume that the formula is true for
t = k and show that then it is true for ¢t = k& + 1; the induction

hypothesis states that:

P, = PM* — Y (M =1 implies P, = PM*+! — y (M1

1. From the definition we have: P,,.1 = P.M —Y
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Proof, continuation

® |nduction step: For each £ > 0 assume that the formula is true for
t = k and show that then it is true for ¢t = k& + 1; the induction
hypothesis states that:
P, = PM* — (X4 =LY implies P,y = PM*+! — y (4 _Z=1)
1. From the definition we have: P,,.1 = P.M —Y
2. Using the induction hypothesis to calculate P, we get

k
Pyp1 = [PMF — Y (ME=1)M — Y

Definitions, Theorems, and Proofs — p.49/49
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