
Decidable Problems Concerning
Context-Free Languages

Decidable Problems Concerning Context-Free Languages – p.1/33

Topics

� Problem 1: describe algorithms to test whether
a CFG generates a particular string

� Problem 2 describe algorithms to test whether
the language generated by a CFG is empty.

� Problem 3: describe algorithms to test whether
an arbitrary string is an element of a context
free language, (i.e., is there a CFG such
that a string � � � � �

?)

� Problem 4: for two CFLs

��
� and

��
� is

�
� 	 ��
�

true?

Decidable Problems Concerning Context-Free Languages – p.2/33

Note

Problem 1 differs from Problem 3 because in

Problem 3 the language is given while in Problem

1 the grammar is given.

Decidable Problems Concerning Context-Free Languages – p.3/33

Problem 1 string generation problem

Problem: For a given CFG grammar

	
�

� � �
� �

and string � � �
, does

generates � (i.e., is

� �

� true?)

Language:

��� � � � 	
 �

� � �� �

is a CFG that generates string � �

Decidable Problems Concerning Context-Free Languages – p.4/33

Theorem 4.7 (4.6)

�� � is a decidable language

Proof ideas: For a CFG and a string �:

� First idea: Go through all derivations
generated by checking whether any is a
derivation of �.

Since there are infinitely many derivations this idea does not work.

If

�

does not generate � the algorithm doesn’t halt. I.e, this idea

provides a recognizer but not a decider

Decidable Problems Concerning Context-Free Languages – p.5/33

A better idea

� Make the recognizer a decider. For that we
need to ensure that the algorithm tries only
finitely many derivations.

Decidable Problems Concerning Context-Free Languages – p.6/33

Fact 1

If

�

is a CFG in Chomsky normal form then for any � � � � � �

where

� �� � � exactly

� � � � steps are required for any derivation of �

Proof:

1. Derivation rules of a Chomsky normal form are of the form:

� � ��� ��	 � � �
 .

2. The rule

� � � � � 	 adds 1 to the length of �. That is, if

� �� � �

then

� � �
� �
	 � �
� �
	 �
� � �
� � 	�� � � ��� , using � � � steps.

3. To eliminate

� � ,

� 	 ,� � � ,
��� by rules of the form

� �
 we need
another � steps.

Conclusion: only

� � � � steps are required.

Decidable Problems Concerning Context-Free Languages – p.7/33

Checking CFG derivations

� Convert into Chomsky normal form

� For a string � of length

� � �

	 �, � � �

, check
all derivations with 2n-1 steps to determine
whether generates �

� For a string �, of length
� � � �

, check all
one-step derivations to determine whether
generates �.

Note: since we can convert into a Chomsky nor-

mal form (see Section 2.1), this is a good idea

Decidable Problems Concerning Context-Free Languages – p.8/33

Proof of Theorem 4.7

The TM

�

that decide �� � is:

�

= "On input

 �

� � � , where

�

is a CFG and � is a string:

1. Convert

�

to an equivalent grammar in Chomsky normal form

2. List all derivations with

� � � � steps, � � � � � � � � � � � except if

� � �

;
for � � �

list all derivations with 1 step

3. If any of the derivations listed above generates �, accept; if not
reject."

Decidable Problems Concerning Context-Free Languages – p.9/33

Observations

�

The problem of testing whether

�

generates � is actually the
parsing problem of compiling programming languages

�

The algorithm performed by

�

is very inefficient. Early algorithm
based on the same idea is

� � � � �

�

Theorem 2.20 proves that CFG are equivalent with PDA and
provides a mechanism to convert a CFG into a PDA and
vice-versa.

Conclusion: everything about decidability of problems concerning
CFG applies equally to PDAs

Decidable Problems Concerning Context-Free Languages – p.10/33

Problem 2 Emptiness testing for CFGs

Problem: For a given CFG is

� � �

	
�

?

Language:

�� � 	
�� � � ��� � � � � � � �

	
�	

Theorem 4.8: �� � is a decidable language

Decidable Problems Concerning Context-Free Languages – p.11/33

Proof idea

�

To test whether

� � � �

is empty we need to test whether the axiom
of

�

can generate a string of terminals

�

We may solve however a more general problem, determining for
each variable whether that variable can generate a string of
terminals

�

When the algorithm determines that a variable can generate a
string of terminals the algorithm mark that variable

�

The algorithm start by marking first all terminals. Then it marks
variables that have on their rhs in some rules only terminals, i.e.,
marked symbols, and so one

Decidable Problems Concerning Context-Free Languages – p.12/33

Proof of theorem 4.8

Construct the TM :

�

= "On input

 � �

where

�

is a CFG:

1. Mark all terminal symbols of

�

2. Repeat until no new variable get marked:

Mark any variable

�

where
�

has a rule

� �� � � 	� � � � � and
each symbol� � � � 	 �� � � � � � has already been marked

3. If the start symbol of G (i.e., the axiom) is not marked, accept;
otherwise reject.

Decidable Problems Concerning Context-Free Languages – p.13/33

Problem 3 decidability of CFL

Problem: for an CFL and string � does �

belong to ?, i.e. is there a CFG such that

� � � � �

?

Language: �� � 	
�� � �

a CFL and � string

	

Theorem 4.9 Every context-free language is decid-

able

Decidable Problems Concerning Context-Free Languages – p.14/33

Proof idea

Let be a CFL

� A bad idea: convert a PDA for directly into
a TM.

Some branches of a PDA computation may go forever, reading

and writing the stack without coming to a halt. The simulation TM

would then have some non-halting branches in its computation

and thus it would not be a decider

� A good idea: use the TM

�

that decides string
generation problem by converting into
Chomsky normal form

Decidable Problems Concerning Context-Free Languages – p.15/33

Proof of Theorem 4.9

Let be a CFG for , i.e.

� � �

	 . Design a
TM � that decides by building a copy of
into �:

� � = "On input �:

1. Run TM

�

on input

 �

� � �

2. If this machine accepts, accept; if it rejects, rejects

Note: TM

�

converts

�

to Chomsky normal form, and produces all

derivations of length
� � � � where � � � �� . Then check if � is among

the derived strings.

Decidable Problems Concerning Context-Free Languages – p.16/33

Fact 2

Class of CF languages is not closed under
intersection
Proof: By construction.

�

Consider the CF languages

� � 	
 � �� �� � � � � � � �

and,

� � 	
 � �� � �� � � � � � �

generated by the grammars:

� � �� � � �
 ��	� � � � � � ��	� and

� � � �� � �
 � ��� � � � � ��� respectively.

� � � � ��
 � � � � � 	
 � �� �� � � � � �

which is not a CFL

�

This establishes Fact 2.

Decidable Problems Concerning Context-Free Languages – p.17/33

Fact 3

Class of CF languages is not closed under
complementation

Proof: by contradiction.
Assume that CFL is closed under
complementation

�

If

�� and

�	 are two CFG then
� � �� �

and

� � �	 �

are CFL

�

Then

� � �� ��� � � �	 �

is a CFL. Hence,

� � �
� � � � � �	 �

is a CFL.

�

By DeMorgan’s law
� � �� ��� � � �	 � � � � �� �
 � � �	 �

, a
contradiction because class of CFL is not closed under
intersections.

Decidable Problems Concerning Context-Free Languages – p.18/33

Problem 4 CFL equality problem

Problem: For two CFL languages generated by
two CFGs

and is

� � �

	 � � �

true?

Language: �� � 	
��

�

� �

� CFGs and

� � �

	 � � � 	

Note:

� Since class of CF languages is not closed
under intersection and complementation (as
seen before), we cannot use the symmetric
difference for �� �.

� In fact �� � is not decidable (to be proven
later)

Decidable Problems Concerning Context-Free Languages – p.19/33

Methodology (review)

To solve decidability problems concerning
relations between languages one should proceed
as follows:

�

Understand the relationship

�

Transform the relationship into an expression using closure
operators on decidable languages

�

Design a TM that constructs the language thus expressed

�

Run a TM that decide the language represented by the expression

Decidable Problems Concerning Context-Free Languages – p.20/33

Example 1

Equivalence of DFA and REX:

� Consider the problem of testing whether a
DFA and a regular expression are equivalent.

� Express this problem as a language and
show that this language is decidable

Decidable Problems Concerning Context-Free Languages – p.21/33

Solution

�

Let

� ��� � ��� �� 	 � 	
 �
� � � � �

is a DFA,

�

is a regular expression
and

� � � � � � � � � �

�

The following TM

�

decides

� � � � ��� �� 	 :

�

= "On input

 �
� � �

1. Convert

�

to an equivalent DFA
�

2. Use the TM

�

for deciding
� � � � � on input

 �
� � �

3. If

�

accepts, accept; if
�

rejects, reject."

Note:

�

constructs

�

, the DFA that recognizes the symmetric

difference of

�

and
�

,
� � � � � � � � ��
 � � � � � � � � � � �
 � � � �

; and test

if

� � � �

is empty

Decidable Problems Concerning Context-Free Languages – p.22/33

Example 2

Decidability of

�

� Problem: is the language

�

, for a finite
alphabet, decidable?

� Language:

� � �� � � � 	
 � �� �
is a DFA that recognize

�� �

Show that

� �
� � � is decidable

Decidable Problems Concerning Context-Free Languages – p.23/33

Solution

The TM

�

that decides

� �
� � � uses the fact

that

� � �

is regular

�

= "On input

 � �

where

�

is a DFA:

1. Construct DFA

�

that recognizes

� � � �
by swapping accept and

unaccept states in

�

2. Run the TM

�

that decides the emptiness

�� � � on

�

3. If T accepts, accept; if

�

rejects reject."

Note: if

�

accepts it means that

� � � � � �

. But

� � � � � � � � �

. That is,

�� � � � � � � �

, i.e.
� � � � � ��

.

Decidable Problems Concerning Context-Free Languages – p.24/33

Example 3

Using CFG and REX

� Problem: show that the problem of testing
whether a CFG generates some string in

� �

is
decidable.

� Language:

� � 	
 � � � �

is a CFG over

	 � � � � �

and

� �
 � � � � � � � �

Decidable Problems Concerning Context-Free Languages – p.25/33

Solution

Assume that

�

is over

	 � � � � �

. Then we need to show that the
language

� � 	
 � � � �

is a CFG over

	 � � � � �

and

� �
 � � � � � � � �

is
decidable. Since

� �

is regular and

� � � �

is CFL then
� �
 � � � �

is a
CFL. Hence the TM

�

that decides

�

is:

�

= “On input

 � �

where

�

is a CFG:

1. Construct CFG

�

such that

� � � � � � �
 � � � �

2. Run the TM

�

that decides the language

�� � � on

 � �

3. If

�

accepts, reject; if
�

rejects, accept."

Note: if

�

accepts it means that

� � � � � � �
 � � � � � �

. That is,

� � � � �

,

� �� � � � �

, hence,
�

should reject.

Decidable Problems Concerning Context-Free Languages – p.26/33

Example 4

Example regular expressions

�

Problem: Is the language generated by a particular regular
expression decidable? For example, is the language of regular
expressions that contain at least one string that has the pattern
“111" as a substring decidable?

�

Language:

� � 	
 � �� �

is a regular expression describing a
language that contain at least one string � that has “111" as a
substring (i.e., � � �� � � � where � and � are strings

�

Decidable Problems Concerning Context-Free Languages – p.27/33

Solution

The language

�

is decidable. The reason is that language

�

can be
expressed using regular operators as

� � � � � � � � � �� �
 � � � �

. Hence,
the TM

�

that decides

�

is:

�

= "On input

 � �

where

�

is a regular expression:

1. Construct the DFA

�

that accepts
� � � � � ��

2. Construct the DFA

�

that accepts
� � � � � � � � �
 � � � �

3. Run TM

�

that decide

�� � � on input

 � �

4. If

�

accepts reject; if

�
rejects accept."

Note: if accepts, it means that

� � � � � � �

	
�

,

i.e.,

��� � � � �
, � � � � � � � � �

.

Decidable Problems Concerning Context-Free Languages – p.28/33

The halting problem

� Our problem now is to test whether a Turing
machine accepts a given input string.

� By analogy with � � � and �� � we call the
corresponding language � �

��� � � 	
 �� � �� �� �
 � �
 � � �
 � � �� � � � �

� Contrasting � � � and �� �, which are
decidable,

� � is not decidable

Decidable Problems Concerning Context-Free Languages – p.29/33

Theorem 4.11

� � is undecidable

� � � is however Turing-recognizable

� Hence, Theorem 4.11 shows that recognizers
are more powerful than deciders

� Requiring a TM to halt on all inputs restricts
the kind of languages that it can recognize

Decidable Problems Concerning Context-Free Languages – p.30/33

A recognizer for

The following TM recognizes � �

�

= "On input

 �� � � , where

�

is a TM and � is a string

1. Simulate

�

on input �

2. If

�

ever enters its accept state, accept; if

�

ever enters its reject
state, reject".

Decidable Problems Concerning Context-Free Languages – p.31/33

Note

� Machine loops on the input

�

� � � if
loops on �. This is why does not decide

� �.

� If the algorithm had some way to determine
that was not halting on �, it could reject.
This is why it is called the halting problem.

� However, as we demonstrate Theorem 4.11,
an algorithm has no way to make this
determination

Decidable Problems Concerning Context-Free Languages – p.32/33

Observations

1. The TM

�

is interesting in its own right because it is an example
of the universal Turing machine, first proposed by Turing

2.

�

is called universal because it is capable to simulate any other
Turing machine from the description of that machine

3. The universal TM played an important role in the theory of
computation by stimulating the development of stored-program
computers

Note: the algorithm implemented by a processor while executing a
program:

while ((PC).opcode is not halt)

Execute PC;

PC := Next(PC);

behaves like U. Decidable Problems Concerning Context-Free Languages – p.33/33

	Topics
	Note
	Problem 1 {scriptsize string generation problem}
	Theorem 4.7 (4.6)
	A better idea
	Fact 1
	Checking CFG derivations
	Proof of Theorem 4.7
	Observations
	Problem 2 {scriptsize Emptiness testing for CFGs}
	Proof idea
	Proof of theorem 4.8
	Problem 3 {scriptsize decidability of CFL}
	Proof idea
	Proof of Theorem 4.9
	Fact 2
	Fact 3
	Problem 4 {scriptsize CFL equality problem}
	Methodology (review)
	Example 1
	Solution
	Example 2
	Solution
	Example 3
	Solution
	Example 4
	Solution
	The halting problem
	Theorem 4.11
	A recognizer for A_{TM}
	Note
	Observations

