Decidability
Topics

- Discuss the power of algorithms to solve problems
- Demonstrate that some problems can be solved by algorithms while other cannot
- Explore the limits of algorithmic solvability
- Demonstrate the unsolvability of certain problems
Rationale for decidability

- Knowing when a problem is algorithmically unsolvable is useful because this shows us that the problem must be simplified.
- Like any tool, computers have capabilities and limitations that must be appreciated if they are to be used well.
- A glimpse of the unsolvable problem stimulates imagination and help to gain important perspective on computation.
Problems versus languages

- Problem solving methodology
 Steps: formalize problem, develop a solution algorithms, execute the algorithm, check the solution

- Any problem that can be formalized can be expressed as a language
 Mechanism: If P be a problem then $L_P = \{E | E \text{ is an expression of } P \}$ is the language of P.
 Solution: if P is solvable then there is an algorithm that solves it. This is equivalent to saying that a TM M_P decides L_P.

- We use languages to represent various computational problems because we have a terminology for dealing with languages

- We examine first a few decidability problems
Recall: a language L is decidable if there exists a TM M which halts on every element of L, accepting or rejecting it.

- We develop examples of languages that are decidable by algorithms.
- We present algorithms that test whether a string is a member of a regular language or whether it is a member of a CF language.
- These kind of problems have practical applications on compiler construction.

Example: if the lexicon of a PL is specified by a regular language and regular languages are decidable than we can develop correct lexical analyzers for PL.
Problem solving

- **Direct method**: formulate the problem as a statement asking to show that the language of the problem is decidable and construct a TM that decides it.

Example:

1. **Problem**: design an algorithm that perform lexical analysis in a programming language.
2. **Language**: specify the lexicon of a programming language by regular expressions and design an algorithm that accept an expression if it is specified by a regular expression and reject it if it is not specified by a regular expression.

Pragmatic questions: how do we make the algorithm efficient and convenient? These questions are of no concern in theory of
Problem solving

- **Indirect method:**
 1. Formulate the problem as a statement asking to show that the language L of the problem is decidable.
 2. Express the language $L = E(L_1, \ldots, L_k)$ in terms of the languages L_1, \ldots, L_k that are decided by the TM-s M_1, \ldots, M_k.

 Note: the expression $L = E(L_1, \ldots, L_k)$ must be constructed using only closure operators.

 3. Construct a TM that decides the language L using the Turing machines M_1, \ldots, M_k that decide the languages L_1, \ldots, L_k as subprocedures of M.

Example: specify a PL as an expression $E(RL, CFL)$ where RL is a regular language, CFL is a context-free language. Knowing the TMs M_1 that decide RL and M_2 that decide CFL, construct the
Methodology

- Start with well-known problems and languages, such as Finite Automata and Regular Expressions and their closure operators.
- Advance on Chomsky’s hierarchy to Pushdown Automata and Context-Free Languages using their closure operators.
- Develop closure operators for TMs and use them in the framework developed so far.

Note: the closure operators for TMs are subject of the problems given in the assignment 5.
Example problems

• Consider the acceptance problem for DFAs:
 \textit{test whether a particular finite automaton accepts a given string.}
 This can be expressed as a language A_{DFA}

• A_{DFA} contains the encodings of all DFAs together with strings the
 DFAs accept, i.e.. $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts } w \}$

• Hence, testing whether DFA B accepts w is the same as testing
 whether $\langle B, w \rangle \in A_{ADF}$
Methodology review

• Computational problems are formulated in terms of testing membership in a language.
• Showing that a language is decidable is the same as showing that a computational problem is solvable.
• We will show first that A_{DFA} is decidable, i.e., testing whether a given finite automaton accepts a string is solvable.
Theorem 4.1

A_{DFA} is a decidable language

Proof idea: construct a TM M that decides A_{DFA}

$M =$ "On input $\langle B, w \rangle$, where B is a DFA and w is a string

1. Simulate B on w

2. If the simulation ends in an accept state then accept; if it ends in a nonaccepting state then reject."

Note: w is finite and simulation always ends
Performing the simulation

- \(\langle B, w \rangle \) is a representation of a DFA \(B \) together with a string \(w \). One can represent \(B \) by a list of its five components: \(Q, \Sigma, \delta, q_0, F \)
- When \(M \) receives an input it checks first whether this input represents a DFA \(B \) and a string \(w \); if not reject
- If input is right, \(M \) keeps track of \(B \)'s current state and \(B \)'s current position in \(w \) by writing this info on its tape
- Initially the state of \(B \) is \(q_0 \) and \(B \)'s current position is the leftmost symbol of \(w \); the states and position are updated as shown by \(\delta \)
- When \(M \) finishes processing the last symbol of \(w \), \(M \) accepts if \(B \) is in a final state and reject if \(B \) is not in a final state
A DFA simulator

State := q₀;
C := First(Input);
while (C ≠ EOI)
{
 State := δ(State,C);
 C := Next(Input);
}
if (State ∈ F)
 accept;
else
 reject;

Note: EOI stands for end of input.
We can prove a similar theorem for nondeterministic finite automata. For that we consider the language

\[A_{NFA} = \{ \langle B, w \rangle | B \text{ is an NFA and } w \text{ is a string} \} \]
Theorem 4.2

A_{NFA} is a decidable language

Proof: Construct a TM N that decides A_{NFA}.

Note: we could design N to operate like M, simulating an NFA instead of an DFA. However, we will do it differently, will use M as a procedure called by N.
Constructing N

Because M is designed to work with DFAs, N first converts its input NFA to a DFA by the usual technique

$N =$ "On input $\langle B, w \rangle$ where B is an NFA and w is a string

1. Convert NFA B to a DFA C (see theorem 1.39)
2. Run TM M from Theorem 4.1 on $\langle C, w \rangle$
3. If M accepts, accept; otherwise reject"

Note: running M in stage 2 means incorporating M into the design of N as a subprocedure
Regular expressions

Consider the language:

\[A_{REX} = \{ \langle R, w \rangle | R \text{ is a regular expression and } w \text{ is a string} \} \]

Theorem 4.3 \(A_{REX} \) is a decidable language
Proof

The following TM P decides A_{REX}

$P = "On input \langle R, w \rangle$ where R is a regular expression and w is a string

1. Convert R to an equivalent DFA A (see theorem 1.54)
2. Run TM M on input $\langle A, w \rangle$
3. If M accepts, accept; if M rejects, reject".
Theorems 4.1, 4.2, 4.3 show that for decidability purpose presenting a TM M with DFA, NFA, or a regular expression, all are equivalent because M is able to convert one form of encoding to another.
Emptiness problem

- Another kind of problems concerning FAs is the *emptiness testing*
- **The problem**: test if the language of a DFA is empty
- The language of this problem is:

\[E_{DFA} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \} \]
Theorem 4.4

E_{DFA} is a decidable language

Proof idea:

• A DFA accepts some string iff reaching a final state from the start state by traveling along the arrows of the transition diagram of the DFA is possible.

• To test this condition we can construct the TM T that marks states of DFA using the state transition function of the DFA

• Use T to solve emptiness problem
The TM T

$T = "On input $\langle A \rangle$ where A is a DFA:

1. Mark the start state of A

2. Repeat until no new states get marked:
 (a) Mark any state that has a transition coming into it from any
 state that is already marked

3. If no final state is marked, accept; otherwise reject
Language equality

- **The problem:** for two DFA-s A and B, is $L(A) = L(B)$?

- **The language:**

 $$EQ_{DFA} = \{ \langle A, B \rangle | A \land B \text{ are DFAs} \land L(A) = L(B) \}$$
Theorem 4.5

\(EQ_{DFA} \) is a decidable language

Proof idea: (use the indirect method and theorem 4.4)

- Construct a DFA \(C \) from \(A \) and \(B \) where \(C \) accepts only those strings that are accepted either by \(A \) or \(B \) but not by both.
- If \(A \) and \(B \) recognize the same language then \(C \) accepts nothing.
- The language \(C \) is defined by
 \[
 L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))
 \]
 which is called symmetric difference of \(L(A) \) and \(L(B) \).
- Use machine \(T \) to check if \(C \) is empty.
Symmetric difference

The expression \(L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)) \) called the symmetric difference of \(L(A) \) and \(L(B) \) is illustrated in Figure 1.

![Diagram of symmetric difference between L(A) and L(B)](image)

Figure 1: Symmetric difference of L(A) and L(B)

Note: If \(L(A) = L(B) \) then \(L(A) \cap \overline{L(B)} = L(A) \cap \overline{L(A)} = \emptyset \);

similarly, \(\overline{L(A)} \cap L(B) = \emptyset \) and thus \(C = \emptyset \).
Construction

$L(C') = \emptyset$ iff $L(A) = L(B)$.
Symmetric difference of $L(A)$ and $L(B)$ is constructed by:

1. Use construction employed by the proof showing that the class of regular languages is closed under complementation (for $\overline{L(A)}$ and $\overline{L(B)}$);

2. Use construction at (1) in conjunction with the construction that proves that class of regular languages is closed under intersection;

3. Use the construction at (2) in conjunction with the construction that proves that class of regular languages is closed under union.
Proving Theorem 4.5

Construct the TM F:

$F =$ "On input $\langle A, B \rangle$ where A and B are DFA:

1. Construct DFA C that recognizes $L(C')$ as described above
2. Run TM T from Theorem 4.4 on input $\langle C \rangle$
3. If T accepts, accept; if T rejects, reject."