Properties of Context-Free Grammars
Theorem 2.1

Let $G = (V, \Sigma, R, S)$ be a CFG.
Theorem 2.1

Let $G = (V, \Sigma, R, S)$ be a CFG.

- Suppose that $w = w_1w_2 \ldots w_k$, $k \geq 1$, where $w_i \in (V \cup \Sigma)^*$, $1 \leq i \leq k$ and $w \Rightarrow^* x$.

Theorem 2.1

Let $G = (V, \Sigma, R, S)$ be a CFG.

- Suppose that $w = w_1w_2 \ldots w_k$, $k \geq 1$, where $w_i \in (V \cup \Sigma)^*$, $1 \leq i \leq k$ and $w \Rightarrow x$.

- Then there exist $x_i \in (V \cup \Sigma)^*$, $1 \leq i \leq k$, so that $x = x_1x_2 \ldots x_k$ and $w_i \Rightarrow x_i$.
Theorem 2.1

Let $G = (V, \Sigma, R, S)$ be a CFG.

- **Suppose** that $w = w_1w_2 \ldots w_k$, $k \geq 1$, where $w_i \in (V \cup \Sigma)^*$, $1 \leq i \leq k$ and $w \Rightarrow x$.

- **Then** there exist $x_i \in (V \cup \Sigma)^*$, $1 \leq i \leq k$, so that $x = x_1x_2 \ldots x_k$ and $w_i \Rightarrow^* x_i$

Proof idea: By induction on the length of the derivation of x.
Proof

Induction base: derivation length zero. In this case $w = x$
and $w_i = x_i$, $1 \leq i \leq k$
Proof

Induction base: derivation length zero. In this case \(w = x \) and \(w_i = x_i, \ 1 \leq i \leq k \)

Induction step: assume the result for all derivations of \(n \geq 0 \) steps and consider the \(n+1 \) step derivation \(w_1w_2 \ldots w_k \Rightarrow^* x \).
In this case we have:

1. Suppose this derivation first rewrites w_m, for $1 \leq m \leq k$, i.e.,
\[
w_1 w_2 \ldots w_m \ldots w_k \Rightarrow w_1 w_2 \ldots w_{m-1} y_1 y_2 \ldots y_p w_{m+1} \ldots w_k \Rightarrow^* x
\]
where $w_m \rightarrow y_1 y_2 \ldots y_p$ is a specification rule.
In this case we have:

1. Suppose this derivation first rewrites \(w_m \), for \(1 \leq m \leq k \), i.e.,
 \[
 w_1w_2 \ldots w_m \ldots w_k \Rightarrow w_1w_2 \ldots w_{m-1}y_1y_2 \ldots y_p w_{m+1} \ldots w_k \Rightarrow x
 \]
 where \(w_m \rightarrow y_1y_2 \ldots y_p \) is a specification rule.

2. Applying the induction hypothesis to the last \(n \) steps of this derivation, there must exist \(x_1, x_2, \ldots, x_{m-1}, x_{m+1}, \ldots, x_k, z_1, z_2, \ldots, z_p \) so that \(w_i \Rightarrow^* x_i, i = 1, 2, \ldots, m - 1, m + 1, \ldots, k \) and \(y_j \Rightarrow z_i, 1 \leq j \leq p \), and \(x = x_1x_2 \ldots x_{m-1}z_1z_2 \ldots z_p x_{m+1} \ldots x_k \).
In this case we have:

1. Suppose this derivation first rewrites w_m, for $1 \leq m \leq k$, i.e.,
 $$w_1w_2\ldots w_m\ldots w_k \Rightarrow w_1w_2\ldots w_{m-1}y_1y_2\ldots y_pw_{m+1}\ldots w_k \Rightarrow^* x$$
 where $w_m \Rightarrow y_1y_2\ldots y_p$ is a specification rule.

2. Applying the induction hypothesis to the last n steps of this derivation, there must exist $x_1, x_2, \ldots, x_{m-1}, x_{m+1}, \ldots, x_k$,
 z_1, z_2, \ldots, z_p so that $w_i \Rightarrow^* x_i$, $i = 1, 2, \ldots, m-1, m+1, \ldots, k$ and
 $y_j \Rightarrow z_i$, $1 \leq j \leq p$, and $x = x_1x_2\ldots x_{m-1}z_1z_2\ldots z_px_{m+1}\ldots x_k$.

3. Taking $x_m = z_1z_2\ldots z_p$ and $w_m \Rightarrow y_1y_2\ldots y_p \Rightarrow^* x_m$ the induction is extended to $n + 1$ length derivation
Example application

Consider the CFG $G = (\{S, B\}, \{a, b\}, \{S \to aSB|\varepsilon, B \to bB|\varepsilon\}, S)$.
Example application

Consider the CFG $G = (\{S, B\}, \{a, b\}, \{S \to aSB|\epsilon, B \to bB|\epsilon\}, S)$.

- The following are derivations with G:

 $S \Rightarrow aSB \Rightarrow aaSBBB \Rightarrow aaSbbBB,$
 $S \Rightarrow aSB \Rightarrow aaSBBB \Rightarrow aaSBbB,$
 $S \Rightarrow aSB \Rightarrow aaSBBB \Rightarrow aaSB,$
 $S \Rightarrow aSB \Rightarrow aaSBBB \Rightarrow aabB$

 which show that derivations with this grammar are quite complex.
According to Theorem 2.1, when rewriting the string $aaSBB$ we can consider further derivations of each of its symbols in isolation.
Note

• According to Theorem 2.1, when rewriting the string \(aaSBB\) we can consider further derivations of each of its symbols in isolation.

• Derivations from \(B\) are \(B \Rightarrow bB \Rightarrow bbB \Rightarrow b^kB, \ k \geq 0\).
Note

- According to Theorem 2.1, when rewriting the string $aaSBB$ we can consider further derivations of each of its symbols in isolation.

- Derivations from B are $B \Rightarrow bB \Rightarrow bbB \Rightarrow b^kB$, $k \geq 0$

- Therefore $aaSBB \Rightarrow^* aaSb^p b^q$, $p, q \geq 0$
Let $G = (V, \Sigma, R, S)$ be a CFG. A symbol:
Reachable symbols

Let $G = (V, \Sigma, R, S)$ be a CFG. A symbol:

1. $X \in (V \cup \Sigma)$ is reachable if $S \Rightarrow^* \alpha X \beta$ for some $\alpha, \beta \in (S \cup \Sigma)^*$;
Reachable symbols

Let $G = (V, \Sigma, R, S)$ be a CFG. A symbol:

1. $X \in (V \cup \Sigma)$ is reachable if $S \Rightarrow^* \alpha X \beta$ for some $\alpha, \beta \in (S \cup \Sigma)^*$;
2. $X \in (V \cup \Sigma)$ is unreachable otherwise
Let $G = (V, \Sigma, R, S)$ be a CFG. A symbol:

1. $X \in (V \cup \Sigma)$ is reachable if $S \Rightarrow^* \alpha X \beta$ for some $\alpha, \beta \in (S \cup \Sigma)^*$;
2. $X \in (V \cup \Sigma)$ is unreachable otherwise
3. $X \in V$ is live if $X \Rightarrow^* x$ for some $x \in \Sigma^*$
Reachable symbols

Let $G = (V, \Sigma, R, S)$ be a CFG. A symbol:

1. $X \in (V \cup \Sigma)$ is reachable if $S \Rightarrow^* \alpha X \beta$ for some $\alpha, \beta \in (S \cup \Sigma)^*$;
2. $X \in (V \cup \Sigma)$ is unreachable otherwise
3. $X \in V$ is live if $X \Rightarrow^* x$ for some $x \in \Sigma^*$
4. $X \in V$ is dead if there is no $x \in \Sigma^*$ such that $X \Rightarrow^* x$
Reachable symbols

Let $G = (V, \Sigma, R, S)$ be a CFG. A symbol:

1. $X \in (V \cup \Sigma)$ is reachable if $S \Rightarrow^* \alpha X \beta$ for some $\alpha, \beta \in (S \cup \Sigma)^*$;
2. $X \in (V \cup \Sigma)$ is unreachable otherwise
3. $X \in V$ is live if $X \Rightarrow^* x$ for some $x \in \Sigma^*$
4. $X \in V$ is dead if there is no $x \in \Sigma^*$ such that $X \Rightarrow^* x$
5. $X \in (X \cup \Sigma)$ is useless if it is either unreachable or dead
Note

- **Unreachable symbols and their productions** can contribute nothing to the language specified by a CFG.
Note

- **Unreachable symbols and their productions** can contribute nothing to the language specified by a CFG.
- **The occurrence of a dead variable in a derivation** insures that that derivation contribute no string in the language, even if that variable is reachable.
Note

- **Unreachable symbols and their productions** can contribute nothing to the language specified by a CFG.
- **The occurrence of a dead variable in a derivation** insures that that derivation contribute no string in the language, even if that variable is reachable.
- **While useless symbols are no value to the description of a language**, they are not prohibited.
Example

Consider the CFG $G = (\{S, A, B, C\}, \{a, b\}, R, S)$ where R is the set

$$
S \rightarrow bb \mid aB \\
A \rightarrow a \mid Aa \\
B \rightarrow bB \mid Ba \mid AB \\
C \rightarrow ba \mid aA \mid Bb \mid aCb
$$
Consider the CFG $G = (\{S, A, B, C\}, \{a, b\}, R, S)$ where R is the set

\[
\begin{align*}
S & \rightarrow \ bb | aB \\
A & \rightarrow \ a | Aa \\
B & \rightarrow \ bB | Ba | AB \\
C & \rightarrow \ ba | aA | Bb | aCb
\end{align*}
\]

1. C is unreachable and B is dead
Example

Consider the CFG $G = (\{S, A, B, C\}, \{a, b\}, R, S)$ where R is the set

\[
\begin{align*}
S & \rightarrow bb \mid aB \\
A & \rightarrow a \mid Aa \\
B & \rightarrow bB \mid Ba \mid AB \\
C & \rightarrow ba \mid aA \mid Bb \mid aCb
\end{align*}
\]

1. C is unreachable and B is dead
2. A is live and reachable but contributes nothing to the language
Cleaning up a grammar is the process of eliminating useless symbols and their productions.
Dead symbol elimination

For each CFG $G = (V, \Sigma, R, S)$ with $L(G) \neq \emptyset$, there is a CFG $G' = (V', \Sigma, R', S)$ so that $L(G') = L(G)$, $V' \subseteq V$, $R' \subseteq R$, and G' has no dead symbols.
Dead symbol elimination

For each CFG $G = (V, \Sigma, R, S)$ with $L(G) \neq \emptyset$, there is a CFG $G' = (V', \Sigma, R', S)$ so that $L(G') = L(G)$, $V' \subseteq V$, $R' \subseteq R$, and G' has no dead symbols.

Proof idea: partition inductively the variables of G as follows:
Dead symbol elimination

For each CFG $G = (V, \Sigma, R, S)$ with $L(G) \neq \emptyset$, there is a CFG $G' = (V', \Sigma, R', S)$ so that $L(G') = L(G)$, $V' \subseteq V$, $R' \subseteq R$, and G' has no dead symbols.

Proof idea: partition inductively the variables of G as follows:

1. $V_0 = \{ X \in V \mid X \rightarrow w \in R \land w \in \Sigma^* \}$
Dead symbol elimination

For each CFG $G = (V, \Sigma, R, S)$ with $L(G) \neq \emptyset$, there is a
CFG $G' = (V', \Sigma, R', S)$ so that $L(G') = L(G)$, $V' \subseteq V$,
$R' \subseteq R$, and G' has no dead symbols.

Proof idea: partition inductively the variables of G as follows:

1. $V_0 = \{ X \in V \mid X \rightarrow w \in R \land w \in \Sigma^* \}$
2. For $i \geq 0$ define $V_{i+1} = V_i \cup \{ X \in V \mid X \rightarrow w \in R \land w \in (V_i \cup \Sigma)^* \}$
Dead symbol elimination

For each CFG $G = (V, \Sigma, R, S)$ with $L(G) \neq \emptyset$, there is a CFG $G' = (V', \Sigma, R', S)$ so that $L(G') = L(G)$, $V' \subseteq V$, $R' \subseteq R$, and G' has no dead symbols.

Proof idea: partition inductively the variables of G as follows:

1. $V_0 = \{ X \in V \mid X \rightarrow w \in R \land w \in \Sigma^* \}$
2. For $i \geq 0$ define $V_{i+1} = V_i \cup \{ X \in V \mid X \rightarrow w \in R \land w \in (V_i \cup \Sigma)^* \}$
3. Define $V' = \bigcup_{i=0}^{\infty} V_i$ and $R' = \{ X \rightarrow w \in R \mid \land w \in (V' \cup \Sigma)^* \}$
Claim

We show now that V' is the set of all live symbols of G and for each $X \in V$, $X \xrightarrow{R} y \in \Sigma^*$ iff $X \xrightarrow{R'} y \in \Sigma^*$.
Claim

We show now that V' is the set of all live symbols of G and for each $X \in V$, $X \xrightarrow{R} y \in \Sigma^*$ iff $X \xrightarrow{R'} y \in \Sigma^*$

Every variable in V' is live
Claim

We show now that V' is the set of all live symbols of G and for each $X \in V$, $X \xrightarrow{R} y \in \Sigma^*$ iff $X \xrightarrow{R'} y \in \Sigma^*$

Every variable in V' is live

1. Each $X \in V'$ must belong to V_i for some i
We show now that V' is the set of all live symbols of G and for each $X \in V$, $X \xrightarrow{R} y \in \Sigma^*$ iff $X \xrightarrow{R'} y \in \Sigma^*$

Every variable in V' is live

1. Each $X \in V'$ must belong to V_i for some i

2. By definition, variables in V_0 are live
Claim

We show now that V' is the set of all live symbols of G and for each $X \in V$, $X \xrightarrow{R} y \in \Sigma^*$ iff $X \xrightarrow{R'} y \in \Sigma^*$

Every variable in V' is live

1. Each $X \in V'$ must belong to V_i for some i

2. By definition, variables in V_0 are live

3. If variables in V_i are live then variables in V_{i+1} are live by construction
Proof, continuation

By ind. on the length of a shortest derivation from $X \in V$ we show that every live variable X of G belongs to V'.
By ind. on the length of a shortest derivation from $X \in V$ we show that every live variable X of G belongs to V'

1. If X has a one step derivation then by construction $X \in V_0$ and hence $X \in V'$
By ind. on the length of a shortest derivation from \(X \in V \) we show that every live variable \(X \) of \(G \) belongs to \(V' \)

1. If \(X \) has a one step derivation then by construction \(X \in V_0 \) and hence \(X \in V' \)

2. Assume that all variables with \(n \) or fewer step derivations to a terminal string belong to \(V' \) and consider a variable \(X \) with \(n + 1 \) step derivation, say \(X \Rightarrow w_1 w_2 \ldots w_k \Rightarrow^* y \in \Sigma^* \).
By ind. on the length of a shortest derivation from $X \in V$ we show that every live variable X of G belongs to V'

1. If X has a one step derivation then by construction $X \in V_0$ and hence $X \in V'$

2. Assume that all variables with n or fewer step derivations to a terminal string belong to V' and consider a variable X with $n + 1$ step derivation, say $X \Rightarrow w_1 w_2 \ldots w_k \Rightarrow^* y \in \Sigma^*$.

3. By Theorem 2.1, $y = y_1 y_2 \ldots y_k$ and $w_i \Rightarrow^* y_i$, $1 \leq i \leq k$. Hence, by induction hypothesis $w_i \in V'$. But then each w_i, $1 \leq i \leq k$ belongs to some set $V_m \subseteq V'$.

Note

If p is the maximum index m in the above conclusion then by construction $\{w_1, w_2, \ldots, w_k\} \subseteq V_p \subseteq V'$. Thus the derivation $X \Rightarrow w_1w_2\ldots w_k$ sets X in V_{p+1} and therefore $X \in V'$.
Proof, continuation

\[L(G') = L(G) \]

1. Since \(L(G) \neq \emptyset \) it result that \(S \) is live and hence \(S \in V' \)
Proof, continuation

\[L(G') = L(G) \]

1. Since \(L(G) \neq \emptyset \) it result that \(S \) is live and hence \(S \in V' \)

2. \(L(G') \subseteq L(G) \) because \(R' \subseteq R \) and so any rewriting in \(G' \) can also be done in \(G \)
Proof, continuation

\[L(G') = L(G) \]

1. Since \(L(G) \neq \emptyset \) it result that \(S \) is live and hence \(S \in V' \)

2. \(L(G') \subseteq L(G) \) because \(R' \subseteq R \) and so any rewriting in \(G' \) can also be done in \(G \)

3. \(L(G) \subseteq L(G') \): each step in the derivation of a string of terminals in \(G \) can introduce no dead symbols and so productions used belong to \(R' \).
Unreachable symbol elimination

For each CFG $G = (V, \Sigma, R, S)$ with $L(G) \neq \emptyset$ there is $G' = (V', \Sigma', R', S)$ so that $L(G') = L(G)$, $V' \subseteq V$, $\Sigma' \subseteq \Sigma$, $R' \subseteq R$, and G' has no dead or unreachable symbols.
Proof idea

- **By the previous result**, assume that \(G \) has no dead variables.
Proof idea

- By the previous result, assume that G has no dead variables.
- Split the symbols in $V \cup \Sigma$ inductively by the procedure:
Proof idea

• By the previous result, assume that G has no dead variables.

• Split the symbols in $V \cup \Sigma$ inductively by the procedure:
 1. $S_0 = \{S\}$
Proof idea

- **By the previous result**, assume that G has no dead variables.

- **Split the symbols in $V \cup \Sigma$ inductively** by the procedure:
 1. $S_0 = \{S\}$
 2. For $i \geq 0$, $S_{i+1} = S_i \cup \{\sigma \in (V \cup \Sigma) \mid \exists X \in S_i \land \exists \alpha, \beta \in (V \cup \Sigma)^* \land X \to \alpha \sigma \beta \in R\}$
Proof idea

- **By the previous result**, assume that G has no dead variables.
- **Split the symbols in $V \cup \Sigma$ inductively** by the procedure:
 1. $S_0 = \{S\}$
 2. For $i \geq 0$, $S_{i+1} = S_i \cup \{\sigma \in (V \cup \Sigma) \mid \exists X \in S_i \land \exists \alpha, \beta \in (V \cup \Sigma)^* \land X \rightarrow \alpha \sigma \beta \in R\}$
 3. Set $V' = V \cap (\bigcup_{i=0}^{\infty} S_i)$, $\Sigma' = \Sigma \cap (\bigcup_{i=0}^{\infty} S_i)$,
 $R' = \{r \in R \mid \text{lhs}(r) \in V' \land \text{rhs}(r) \in (V' \cup \Sigma')^*\}$
Claim 1: \(V' \cup \Sigma' \) is exactly the collection of reachable symbols of \(G \)

Proof: show that each \(\sigma \in V' \cup \Sigma' \) is reachable by induction on the smallest index \(i \) so that \(\sigma \in S_i \).

Induction basis: For \(i = 0 \) this is trivial

Induction step: assume that all symbols in \(S_n \) are reachable and \(\sigma \in S_{n+1} \). If \(\sigma \in S_n \) then it is reachable by induction hypothesis; if \(\sigma \notin S_n \) then there exist \(X \in S_n, \alpha, \beta \in (V \cup \Sigma)^* \) with \(X \rightarrow \alpha\sigma\beta \in R \). Since \(X \in S_n \), \(X \) is reachable and so \(S \xrightarrow{\ast} w_1Xw_2 \Rightarrow w_1\alpha\sigma\beta w_2 \) and thus \(\sigma \) is reachable
The claim that every reachable symbol σ of G is in $V' \cup \Sigma'$ is proved by induction on the length of the shortest derivation producing σ.
Claim 2: deleting the unreachable symbols and their rules create no dead variables in G'

Proof: if X is a reachable variable and $X \Rightarrow^* w \in \Sigma^*$ in G, then every symbol introduced in this derivation is also reachable, and so it is not dead. Consequently X is still live in G'
Claim 3: \(L(G') = L(G) \)

Proof: \(L(G') \subseteq L(G) \land L(G) \subseteq L(G') \)

1. \(L(G') \subseteq L(G) \): since \(R' \subseteq R \), each derivation in \(G' \) is a derivation in \(G \).

2. \(L(G) \subseteq L(G') \): If \(S \Rightarrow^* w \in \Sigma^* \) in \(G \) then every symbol introduced in this derivation is reachable. Consequently all productions used are retained in \(G' \) so this is also a derivation in \(G' \).
Clean $G = (\{S, A, B, C\}, \{a, b\}, R, S)$ where R is:

\[
S \rightarrow bb|aB \\
A \rightarrow a|Aa \\
B \rightarrow bB|Ba|AB \\
C \rightarrow ba|aA|Bb|aCb
\]

1. $V_0 = \{S, A, C\} = V_1 = V'$;

 $G' = (\{S, A, C\}, \{a, b\}, \{S \rightarrow bb, A \rightarrow a|Aa, C \rightarrow ba|aA|aCb\}, S)$

2. $S_0 = \{S\}, S_1 = \{S, b\}, S_2 = S_1; G'' = (\{S\}, \{b\}, \{S \rightarrow bb\}, S)$

3. $L(G'') = L(G) = \{bb\}$
Language element interpretation:

- Sometimes a CFG can generate the same string in several different ways.
- Such a string will have several different derivation trees.
- Since each derivation tree represents an interpretation of the string, each derivation tree defines a meaning of the string.
- Different derivation trees for a string means different meanings for the same language element.
Observations

1. Multiple meanings of the same language element are undesirable for some applications
2. For example, multiple meanings of a program are unacceptable in a programming language
3. Each language element in a programming language should have a unique interpretation

Note: multiple derivations for a sentence is a common situation in natural languages
Ambiguity

- If a CFG G generates the same string x in several different ways, we say that x is derived *ambiguously* in G.
Ambiguity

• If a CFG G generates the same string x in several different ways, we say that x is derived *ambiguously* in G.

• If a CFG G generates some string ambiguously we say that the grammar G is *ambiguous*
Example

Consider the grammar G_4 whose rules are:

$$E \rightarrow E + T | T, T \rightarrow T * F | F, F \rightarrow (E) | a$$

and the grammar G_5, whose rules are:

$$E \rightarrow E + E | E * E | (E) | a$$

- $L(G_4) = L(G_5)$
 - **Note**: one can easily show this by showing the inclusions $L(G_4) \subseteq L(G_5)$ and $L(G_5) \subseteq L(G_4)$

- G_5 generates ambiguously some arithmetic expressions while G_4 doesn’t.
Example

Consider the grammar G_4 whose rules are:

$E \rightarrow E + T | T, T \rightarrow T * F | F, F \rightarrow (E) | a$

and the grammar G_5, whose rules are:

$E \rightarrow E + E | E * E | (E) | a$

- $L(G_4) = L(G_5)$

 Note: one can easily show this by showing the inclusions $L(G_4) \subseteq L(G_5)$ and $L(G_5) \subseteq L(G_4)$

- G_5 generates ambiguously some arithmetic expressions while G_4 doesn’t.
Example

Consider the grammar G_4 whose rules are:

$$E \to E + T | T,\ T \to T \ast F | F,\ F \to (E) | a$$

and the grammar G_5, whose rules are:

$$E \to E + E | E \ast E | (E) | a$$

- $L(G_4) = L(G_5)$

 Note: one can easily show this by showing the inclusions
 $$L(G_4) \subseteq L(G_5)$$ and $$L(G_5) \subseteq L(G_4)$$

- G_5 generates ambiguously some arithmetic expressions while G_4 doesn’t.
Ambiguous expressions

Figure 1 shows two different derivation trees for $a + a^*a$

![Derivation Trees]

Figure 1: Two derivation trees for $a + a^*a$
Note

- The grammar G_5 does not capture the usual precedence relations and so groups ‘+’ before ‘∗’ and vice versa.
Note

- The grammar G_5 does not capture the usual precedence relations and so groups '+' before '*' and vice versa.
- In contrast, the grammar G_4 generates the same language, but every generated string has a unique derivation tree.
Note

- The grammar G_5 does not capture the usual precedence relations and so groups ‘+’ before ‘*’ and vice versa.
- In contrast, the grammar G_4 generates the same language, but every generated string has a unique derivation tree.
- Hence, G_5 is ambiguous and G_4 is not, i.e., G_4 is unambiguous.
Another example

G_2 below is another ambiguous grammar

\[
\begin{align*}
 \langle \text{SENTENCE} \rangle & \rightarrow \langle \text{NounPhrase} \rangle \langle \text{VerbPhrase} \rangle \\
 \langle \text{NounPhrase} \rangle & \rightarrow \langle \text{CpNoun} \rangle | \langle \text{CpNoun} \rangle \langle \text{PrepPhrase} \rangle \\
 \langle \text{VerbPhrase} \rangle & \rightarrow \langle \text{CpVerb} \rangle | \langle \text{CpVerb} \rangle \langle \text{PrepPhrase} \rangle \\
 \langle \text{PrepPhrase} \rangle & \rightarrow \langle \text{Prep} \rangle \langle \text{CpNoun} \rangle \\
 \langle \text{CpNoun} \rangle & \rightarrow \langle \text{Article} \rangle \langle \text{Noun} \rangle \\
 \langle \text{CpVerb} \rangle & \rightarrow \langle \text{Verb} \rangle | \langle \text{Verb} \rangle \langle \text{NounPhrase} \rangle \\
 \langle \text{Article} \rangle & \rightarrow \text{a|the} \\
 \langle \text{Noun} \rangle & \rightarrow \text{boy|girl|flower} \\
 \langle \text{Verb} \rangle & \rightarrow \text{touches|likes|sees} \\
 \langle \text{Prep} \rangle & \rightarrow \text{with}
\end{align*}
\]
The sentence:
the girl touches the boy with the flower
has two different derivations, so it is ambiguous
The two derivations correspond to the two readings:

(1) (the girl touches the boy) (with the flower)
(2) (the girl touches) (the boy with the flower)
The sentence:
the girl touches the boy with the flower
has two different derivations, so it is ambiguous.
The two derivations correspond to the two readings:

(the girl touches the boy) (with the flower)

(the girl touches) (the boy with the flower)
The sentence:
the girl touches the boy with the flower
has two different derivations, so it is ambiguous
The two derivations correspond to the two readings:

(the girl touches the boy) (with the flower)

(the girl touches) (the boy with the flower)
Note

- When a grammar generates a string ambiguously it means that the string has two different derivation trees.
Note

- When a grammar generates a string ambiguously it means that the string has two different derivation trees.
- Two different derivations however, may produce the same derivation tree because they may differ in the order in which they replace nonterminals not in the rules they use.
Note

- When a grammar generates a string ambiguously it means that the string has two different derivation trees.
- Two different derivations however, may produce the same derivation tree because they may differ in the order in which they replace nonterminals not in the rules they use.
- To concentrate on the structure of derivations we need to fix the order of rule application.
Fixing rule application order

Leftmost derivation: a derivation of a string w in a grammar G is a *leftmost derivation* if at every step the leftmost nonterminal is replaced
Fixing rule application order

Leftmost derivation: a derivation of a string w in a grammar G is a *leftmost derivation* if at every step the leftmost nonterminal is replaced.

Rightmost derivation: a derivation of a string w in a grammar G is a *rightmost derivation* if at every step the rightmost nonterminal is replaced.
Note

The leftmost and rightmost derivations of a string w are unique, so they are equivalent to the derivation trees.
A string w is derived ambiguously in the CFG G if it has two or more different leftmost (or rightmost) derivations.
Ambiguity again

- A string w is derived ambiguously in the CFG G if it has two or more different leftmost (or rightmost) derivations.
- A CFG G is ambiguous if it generates some string ambiguously.
Ambiguity again

- A string w is derived ambiguously in the CFG G if it has two or more different leftmost (or rightmost) derivations.
- A CFG G is ambiguous if it generates some string ambiguously
Note

Sometimes when we have an ambiguous grammar (such as G_5) we can find an unambiguous grammar (such as G_4) that generates the same language.
Inherent ambiguity

- Some CFL, however, can be generated only by ambiguous grammar.
Inherent ambiguity

- Some CFL, however, can be generated only by ambiguous grammar.
- A CFL that can be generated only by ambiguous grammars is called *inherently ambiguous*
Inherent ambiguity

• Some CFL, however, can be generated only by ambiguous grammar.

• A CFL that can be generated only by ambiguous grammars is called *inherently ambiguous*.

• Example of inherently ambiguous language:

\[\{0^i1^j2^k | i = j \lor j = k\}\]