The Regular Operations
Introduction

- Once automata and computation have been defined, their properties need be studied.
Introduction

• Once automata and computation have been defined, their properties need be studied

• This requires appropriate tools and technique which we initiate here
Introduction

• Once automata and computation have been defined, their properties need be studied.

• This requires appropriate tools and technique which we initiate here.

• We also need tools and techniques for studying non-regular languages, i.e., languages which are beyond the capability of finite automata.
Contrast

- **Arithmetic:** basic objects are **numbers** and the **tools** are **operations** for number manipulation, such as $+$, \times.
Contrast

- **Arithmetic**: basic objects are **numbers** and the tools are **operations** for number manipulation, such as $+$, \times.
- **Theory of Computation**: objects are **languages** and the tools for language manipulation, specifically designed...
Contrast

- **Arithmetic**: basic objects are **numbers** and the tools are **operations** for number manipulation, such as +, ×.

- **Theory of Computation**: objects are **languages** and the tools for language manipulation, **specifically designed**.

- The three common operations on languages, **regular operations**: union \(\cup \), concatenation \(\circ \), and **star** \(\star \).
Definition 1.10

Let A and B be languages. We define regular operations union, concatenation and star as follows:
Definition 1.10

Let A and B be languages. We define regular operations union, concatenation and star as follows:

- **Union:** $A \cup B = \{ x \mid x \in A \lor x \in B \}$
Definition 1.10

Let A and B be languages. We define regular operations union, concatenation and star as follows:

- **Union:** $A \cup B = \{x \mid x \in A \lor x \in B\}$
- **Concatenation:** $A \circ B = \{xy \mid x \in A \land y \in B\}$
Definition 1.10

Let A and B be languages. We define regular operations union, concatenation and star as follows:

- **Union:** $A \cup B = \{ x \mid x \in A \lor x \in B \}$
- **Concatenation:** $A \circ B = \{ xy \mid x \in A \land y \in B \}$
- **Star:** $A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \land x_i \in A, 1 \leq i \leq k \}$
Question

- $A \cup B$, $A \circ B$ and A^* are languages
Question

- \(A \cup B, A \circ B \) and \(A^* \) are languages

- Consequently \(A \cup B, A \circ B \) and \(A^* \) are sets of strings over some alphabets
Question

• \(A \cup B, A \circ B \) and \(A^* \) are languages

• Consequently \(A \cup B, A \circ B \) and \(A^* \) are sets of strings over some alphabets

• What are these alphabets?
Question

- $A \cup B$, $A \circ B$ and A^* are languages
- Consequently $A \cup B$, $A \circ B$ and A^* are sets of strings over some alphabets
- What are these alphabets?

 - Answer: if Σ_A and Σ_B are the alphabets of A and B then these alphabets are $\Sigma_A \cup \Sigma_B$
Question

- $A \cup B$, $A \circ B$ and A^* are languages
- Consequently $A \cup B$, $A \circ B$ and A^* are sets of strings over some alphabets
- What are these alphabets?
 - Answer: if Σ_A and Σ_B are the alphabets of A and B then these alphabets are $\Sigma_A \cup \Sigma_B$
 - Reason: Any language over Σ_A or Σ_B is certainly a language over $\Sigma_A \cup \Sigma_B$. Hence, we may assume $\Sigma_A = \Sigma_B$
Observations

- **Union** is the usual operation on sets
Observations

- **Union** is the usual operation on sets.
- **Concatenation** is a little trickier; it attaches a string from A in front of a string from B in all possible ways to get strings from $A \circ B$.

The Regular Operations – p.6/19
Observations

- **Union** is the usual operation on sets.
- **Concatenation** is a little trickier; it attaches a string from A in front of a string from B in all possible ways to get strings from $A \circ B$.
- **Star** operation is different; it applies to one language, i.e., it is *unary* rather than binary. Star works by attaching any number of strings in A together to get strings in A^*.
Because “any number” includes 0, \(\epsilon \in A^* \), no matter what \(A \) is.
Example 1.11

Let $\Sigma = \{a, b, \ldots, z\}$. If $A = \{good, bad\}$ and $B = \{boy, girl\}$, then:
Example 1.11

Let $\Sigma = \{a, b, \ldots, z\}$. If $A = \{good, bad\}$ and $B = \{boy, girl\}$, then:

- $A \cup B = \{good, bad, boy, girl\}$
Example 1.11

Let $\Sigma = \{a, b, \ldots, z\}$. If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then:

- $A \cup B = \{\text{good, bad, boy, girl}\}$
- $A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
Example 1.11

Let $\Sigma = \{a, b, \ldots, z\}$. If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then:

- $A \cup B = \{\text{good, bad, boy, girl}\}$
- $A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{\varepsilon, \text{goob, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, \ldots}\}$
Closed set

If A is a set and $f : A \times A \rightarrow A$ is total, i.e.,
$\forall a, b \in A : f(a, b) \in A$ then we say that A is closed under f.

Example: consider A and B where A is number multiplication and B is number division.
Since multiplication of natural numbers is total (i.e., over all defined) it is closed under division.
Since the division of two natural numbers is not always a natural number, for example, is not closed under division.
Closed set

If A is a set and $f : A \times A \to A$ is total, i.e.,

$$\forall a, b \in A : f(a, b) \in A$$

then we say that A is closed under f

Example: consider $\mathcal{N} = \{1, 2, 3, \ldots\}$ and $\ast, \div : \mathcal{N} \times \mathcal{N} \to \mathcal{N}$ where \ast is number multiplication and \div is number division.
If A is a set and $f : A \times A \rightarrow A$ is total, i.e.,
$$\forall a, b \in A : f(a, b) \in A$$
then we say that A is closed under f.

Example: consider $\mathcal{N} = \{1, 2, 3, \ldots\}$ and $\times, / : \mathcal{N} \times \mathcal{N} \rightarrow \mathcal{N}$ where \times is number multiplication and $/$ is number division.

- Since multiplication of natural numbers is total (i.e., over all defined) \mathcal{N} is closed under \times.
If A is a set and $f : A \times A \rightarrow A$ is total, i.e.,
\[\forall a, b \in A : f(a, b) \in A \]
then we say that A is closed under f

Example: consider $\mathcal{N} = \{1, 2, 3, \ldots\}$ and $\ast, \div : \mathcal{N} \times \mathcal{N} \rightarrow \mathcal{N}$ where \ast is number multiplication and \div is number division.

- Since multiplication of natural numbers is total (i.e., over all defined) \mathcal{N} is closed under \ast

- Since the division of two natural numbers is not always a natural number, for example $1/2 \notin \mathcal{N}$, \mathcal{N} is not closed under division
Closure of regular languages

- We will show that the collection of regular languages is closed under the three regular operations.
Closure of regular languages

- **We will show that** the collection of regular languages is closed under the three regular operations.

- **This property** provides **useful tools** for manipulating regular languages and for understanding the power of finite automata.
The class of regular languages is closed under union operation, i.e. if A_1 and A_2 are regular then $A_1 \cup A_2$ is regular.
Proof idea

• Because A_1 and A_2 are regular there are automata M_1 and M_2 recognizing A_1 and A_2, respectively.
Proof idea

- Because A_1 and A_2 are regular there are automata M_1 and M_2 recognizing A_1 and A_2, respectively.
- To prove that $A_1 \cup A_2$ is regular we construct a finite automaton M from M_1 and M_2 that recognizes $A_1 \cup A_2$.

The Regular Operations – p.12/19
Proof idea

- **Because** A_1 and A_2 are regular there are automata M_1 and M_2 recognizing A_1 and A_2, respectively.
- **To prove that** $A_1 \cup A_2$ **is regular** we construct a finite automaton M from M_1 and M_2 that recognizes $A_1 \cup A_2$.
- **The machine** M **works by** simulating M_1 and M_2.

The Regular Operations – p.12/19
Proof idea

- Because A_1 and A_2 are regular there are automata M_1 and M_2 recognizing A_1 and A_2, respectively.
- To prove that $A_1 \cup A_2$ is regular we construct a finite automaton M from M_1 and M_2 that recognizes $A_1 \cup A_2$.
- The machine M works by simulating M_1 and M_2.
- Simulation: pretend that you are M. As you read the input symbols you simulate both M_1 and M_2, simultaneously.
Proof idea

- Because A_1 and A_2 are regular there are automata M_1 and M_2 recognizing A_1 and A_2, respectively.
- To prove that $A_1 \cup A_2$ is regular we construct a finite automaton M from M_1 and M_2 that recognizes $A_1 \cup A_2$.
- The machine M works by simulating M_1 and M_2.
- **Simulation**: pretend that you are M. As you read the input symbols you simulate both M_1 and M_2, simultaneously.
- To keep track of both simulations, need to remember the state each machine would be in if it had read up to this point in the input.
More on proof idea

- To remember the states of M_1 and M_2 you need to remember a pair of states.
More on proof idea

- To remember the states of M_1 and M_2 you need to remember a pair of states.
- If M_1 has k_1 states and M_2 has k_2 states then you need $k_1 \times k_2$ states to simulate simultaneously M_1 and M_2.
More on proof idea

- To remember the states of M_1 and M_2 you need to remember a pair of states.
- If M_1 has k_1 states and M_2 has k_2 states then you need $k_1 \times k_2$ states to simulate simultaneously M_1 and M_2.
- Transitions of M goes from pair to pair, updating the state for both M_1 and M_2.

The Regular Operations – p.13/19
More on proof idea

- To remember the states of M_1 and M_2 you need to remember a pair of states.
- If M_1 has k_1 states and M_2 has k_2 states then you need $k_1 \times k_2$ states to simulate simultaneously M_1 and M_2.
- Transitions of M goes from pair to pair, updating the state for both M_1 and M_2.
- The start state of M is the pair of start states of M_1 and M_2; the accept states of M is the set of pairs containing an accept state of M_1 or M_2.

The Regular Operations – p.13/19
Proof

By construction. Let M_1 recognize A_1 where

$M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$, and M_2 recognize A_2 where

$M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$
Proof

By construction. Let M_1 recognize A_1 where

$M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$, and M_2 recognize A_2 where

$M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$

Construct M to recognize $A_1 \cup A_2$,

$M = (Q, \Sigma, \delta, q_0, F')$, where:
Construction of M

- $Q = \{ (r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2 \}$, i.e., $Q = Q_1 \times Q_2$
Construction of M

- $Q = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\}$, i.e., $Q = Q_1 \times Q_2$
- Σ is assumed the same for M_1 and M_2. If M_1 and M_2 have different alphabets, Σ_1 and Σ_2 then $\Sigma = \Sigma_1 \cup \Sigma_2$
Construction of M

- $Q = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\}$, i.e., $Q = Q_1 \times Q_2$
- Σ is assumed the same for M_1 and M_2. If M_1 and M_2 have different alphabets, Σ_1 and Σ_2 then $\Sigma = \Sigma_1 \cup \Sigma_2$
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$, $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
Construction of M

- $Q = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\}$, i.e., $Q = Q_1 \times Q_2$
- Σ is assumed the same for M_1 and M_2. If M_1 and M_2 have different alphabets, Σ_1 and Σ_2 then $\Sigma = \Sigma_1 \cup \Sigma_2$
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$,
 $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- $q_0 = (q_0^1, q_0^2)$
Construction of M

- $Q = \{(r_1, r_2) \mid r_1 \in Q_1, r_2 \in Q_2\}$, i.e., $Q = Q_1 \times Q_2$
- Σ is assumed the same for M_1 and M_2. If M_1 and M_2 have different alphabets, Σ_1 and Σ_2 then $\Sigma = \Sigma_1 \cup \Sigma_2$
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$,
 $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- $q_0 = (q_0^1, q_0^2)$
- $F = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$, i.e., $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$. Note, this is not the same as $F_1 \times F_2$
Corollary

Class of regular languages is closed under intersection.
Corollary

Class of regular languages is closed under intersection.

Proof: For two regular languages A and B, recognized by the automata M_A and M_B the automaton that recognizes the language $A \cap B$ is constructed in the same way as the automaton that recognizes the language $A \cup B$ with the final states defined by $F = \{(r_1, r_2) | (r_1, r_2) \in F_1 \times F_2\}$.
• This construction is fairly simple and thus its correctness is evident from the strategy described by proof idea
Note

- This construction is fairly simple and thus its correctness is evident from the strategy described by proof idea.
- More complicated constructions require additional discussion to prove correctness.
Note

- This construction is fairly simple and thus its correctness is evident from the strategy described by proof idea.
- More complicated constructions require additional discussion to prove correctness.
- A formal correctness proof for a construction of this type usually proceeds by induction. We will illustrate it further.
Theorem 1.26

The class of regular languages is closed under concatenation operation, i.e. if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof idea: As before, we can start with finite automata M_1 and M_2 recognizing A_1 and A_2 and construct the automaton M to recognize $A_1 \circ A_2$.
The class of regular languages is closed under concatenation operation, i.e. if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof idea: As before, we can start with finite automata M_1 and M_2 recognizing A_1 and A_2 and construct the automaton M to recognize $A_1 \circ A_2$.
Ideas for construction of M

- Instead of constructing M to accept its input if either M_1 or M_2 accept, M must accept if its input can be broken into two pieces where M_1 accepts first piece and M_2 accepts second piece.
Ideas for construction of M

- Instead of constructing M to accept its input if either M_1 or M_2 accept, M must accept if its input can be broken into two pieces where M_1 accepts first piece and M_2 accepts second piece.

- The problem is that M does not know where to break its input.
Ideas for construction of M

- Instead of constructing M to accept its input if either M_1 or M_2 accept, M must accept if its input can be broken into two pieces where M_1 accepts first piece and M_2 accepts second piece.
- The problem is that M does not know where to break its input.
- To solve this problem we need to introduce a new technique: the *nondeterminism*.